Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The origin of the terrestrial noble-gas signature

Abstract

In the atmospheres of Earth and Mars, xenon is strongly depleted relative to argon, when compared to the abundances in chondritic meteorites1,2. The origin of this depletion is poorly understood3,4,5,6,7,8,9,10,11,12,13. Here we show that more than one weight per cent of argon may be dissolved in MgSiO3 perovskite, the most abundant phase of Earth’s lower mantle, whereas the xenon solubility in MgSiO3 perovskite is orders of magnitude lower. We therefore suggest that crystallization of perovskite from a magma ocean in the very early stages of Earth’s history concentrated argon in the lower mantle. After most of the primordial atmosphere had been lost, degassing of the lower mantle replenished argon and krypton, but not xenon, in the atmosphere. Our model implies that the depletion of xenon relative to argon indicates that perovskite crystallized from a magma ocean in the early history of Earth and perhaps also Mars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron microscope images of MgSiO 3 perovskite samples saturated with noble gases.
Figure 2: A lattice-strain model 29of noble-gas solubility in MgSiO 3 perovskite.
Figure 3: A sample containing phase X (phX) coexisting with MgSiO 3 ilmenite (Ilm), SiO 2 stishovite (St) and K 2CO 3 carbonate.

Similar content being viewed by others

References

  1. Anders, E. & Owen, T. Mars and Earth—origin and abundance of volatiles. Science 198, 453–465 (1977)

    Article  ADS  CAS  Google Scholar 

  2. Pepin, R. O. & Porcelli, D. Origin of noble gases in the terrestrial planets. Rev. Mineral. Geochem. 47, 191–246 (2002)

    Article  CAS  Google Scholar 

  3. Matsuda, J. & Matsubara, K. Noble gases in silica and their implication for the terrestrial missing Xe. Geophys. Res. Lett. 16, 81–84 (1989)

    Article  ADS  CAS  Google Scholar 

  4. Sanloup, C. et al. Retention of xenon in quartz and Earth’s missing xenon. Science 310, 1174–1177 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Sill, G. T. & Wilkening, L. L. Ice clathrate as a possible source of atmospheres of terrestrial planets. Icarus 33, 13–22 (1978)

    Article  ADS  CAS  Google Scholar 

  6. Wacker, J. F. & Anders, E. Trapping of xenon in ice—implications for the origin of the Earth’s noble gases. Geochim. Cosmochim. Acta 48, 2373–2380 (1984)

    Article  ADS  CAS  Google Scholar 

  7. Jephcoat, A. P. Rare-gas solids in the Earth’s deep interior. Nature 393, 355–358 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Lee, K. K. M. & Steinle-Neumann, G. High-pressure alloying of iron and xenon: “missing” Xe in the Earth’s core? J. Geophys. Res. 111, B02202 (2006)

    ADS  Google Scholar 

  9. Nishio-Hamane, D., Yagi, T., Sata, N., Fujita, T. & Okada, T. No reactions observed in Xe-Fe system even at Earth core pressures. Geophys. Res. Lett. 37, L04302 (2010)

    Article  ADS  Google Scholar 

  10. Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991)

    Article  ADS  CAS  Google Scholar 

  11. Dauphas, M. The dual origin of the terrestrial atmosphere. Icarus 165, 326–339 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Pujol, M., Marty, B. & Burgess, R. Chondritic-like xenon trapped in Archean rocks: a possible signature of the ancient atmosphere. Earth Planet. Sci. Lett. 308, 298–306 (2011)

    Article  ADS  CAS  Google Scholar 

  13. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012)

    Article  ADS  Google Scholar 

  14. Heber, V. S., Brooker, R. A., Kelley, S. P. & Wood, B. J. Crystal-melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene. Geochim. Cosmochim. Acta 71, 1041–1061 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Kojitani, H., Katsura, T. & Akaogi, M. Aluminum substitution mechanisms in perovskite-type MgSiO3: an investigation by Rietveld analysis. Phys. Chem. Mineral. 34, 257–267 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Lauterbach, S., McCammon, C. A., van Aken, P., Langenhorst, F. & Seifert, F. Mossbauer and ELNES spectroscopy of (Mg,Fe)(Si,Al)O3 perovskite: a highly oxidised component of the lower mantle. Contrib. Mineral. Petrol. 138, 17–26 (2000)

    Article  ADS  CAS  Google Scholar 

  17. McCammon, C. A. Perovskite as a possible sink for ferric iron in the lower mantle. Nature 387, 694–696 (1997)

    Article  ADS  CAS  Google Scholar 

  18. Navrotsky, A. Mantle geochemistry—a lesson from ceramics. Science 284, 1788–1789 (1999)

    Article  CAS  Google Scholar 

  19. Navrotsky, A. et al. Aluminum in magnesium silicate perovskite: formation, structure, and energetics of magnesium-rich defect solid solutions. J. Geophys. Res. 108, 2330 (2003)

    Article  ADS  Google Scholar 

  20. Stashans, A., Piedra, L. & Briceno, T. Fundamental and excited states of F-type centres in MgSiO3 perovskite. Physica B 405, 4350–4354 (2010)

    Article  ADS  CAS  Google Scholar 

  21. Stebbins, J. F. et al. Aluminum substitution in stishovite and MgSiO3 perovskite: high-resolution 27Al NMR. Am. Mineral. 91, 337–343 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Zhang, Y. X. & Xu, Z. J. Atomic radii of noble gas elements in condensed phases. Am. Mineral. 80, 670–675 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Yang, H. X., Konzett, J. & Prewitt, C. T. Crystal structure of phase X, a high pressure alkali-rich hydrous silicate and its anhydrous equivalent. Am. Mineral. 86, 1483–1488 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Greenwood, R. C., Franchi, I. A., Jambon, A. & Buchanan, P. C. Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435, 916–918 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Porcelli, D., Woolum, D. & Cassen, P. Deep Earth rare gases: initial inventories, capture from the solar nebula, and losses during moon formation. Earth Planet. Sci. Lett. 193, 237–251 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Morbidelli, A. et al. Source regions and timescales for the delivery of water to the Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Bolfan-Casanova, N., Keppler, H. & Rubie, D. C. Water partitioning at the 660 km discontinuity and evidence for very low water solubility in magnesium silicate perovskite. Geophys. Res. Lett. 30, 1905 (2003)

    Article  ADS  Google Scholar 

  28. Pepin, R. O. Evolution of Earth’s noble gases: consequences of assuming hydrodynamic loss driven by giant impact. Icarus 126, 148–156 (1997)

    Article  ADS  CAS  Google Scholar 

  29. Brooker, R. A. et al. The ‘zero charge’ partitioning behaviour of noble gases during mantle melting. Nature 423, 738–741 (2003)

    Article  ADS  CAS  Google Scholar 

  30. Boettcher, S. L., Guo, Q. & Montana, A. A simple device for loading gases in high-pressure experiments. Am. Mineral. 74, 1383–1384 (1989)

    CAS  Google Scholar 

  31. Günther, D., Frischknecht, R., Heinrich, C. A. & Kahlert, H. J. Capabilities of an Argon Fluoride 193 nm excimer laser for laser ablation inductively coupled plasma mass spectrometry microanalysis of geological materials. J. Anal. At. Spectrom. 12, 939–944 (1997)

    Article  Google Scholar 

  32. Longerich, H. P., Jackson, S. E. & Gunther, D. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom. 11, 899–904 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Science Foundation (DFG, SPP 1236). We thank A. Audetat for measurements of Kr and Xe by laser-ablation ICP-MS, N. Miyajima for help with TEM studies of the samples and T. Boffa-Ballaran for preliminary X-ray data of Ar-bearing perovskite.

Author information

Authors and Affiliations

Authors

Contributions

S.S.S. carried out all experiments and chemical analyses reported in this paper. H.K. suggested this study. Both authors wrote the manuscript together.

Corresponding author

Correspondence to Svyatoslav S. Shcheka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-4, Supplementary Table 1 and additional references. (PDF 368 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcheka, S., Keppler, H. The origin of the terrestrial noble-gas signature. Nature 490, 531–534 (2012). https://doi.org/10.1038/nature11506

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11506

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing