Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visualizing transient low-populated structures of RNA

Abstract

The visualization of RNA conformational changes has provided fundamental insights into how regulatory RNAs carry out their biological functions. The RNA structural transitions that have been characterized so far involve long-lived species that can be captured by structure characterization techniques. Here we report the nuclear magnetic resonance visualization of RNA transitions towards ‘invisible’ excited states (ESs), which exist in too little abundance (2–13%) and for too short a duration (45–250 μs) to allow structural characterization by conventional techniques. Transitions towards ESs result in localized rearrangements in base-pairing that alter building block elements of RNA architecture, including helix–junction–helix motifs and apical loops. The ES can inhibit function by sequestering residues involved in recognition and signalling or promote ATP-independent strand exchange. Thus, RNAs do not adopt a single conformation, but rather exist in rapid equilibrium with alternative ESs, which can be stabilized by cellular cues to affect functional outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Excited-state structure of the HIV-1 TAR apical loop.
Figure 2: Excited-state structure of the ribosomal A-site internal loop.
Figure 3: Two mutually exclusive excited-state structures in HIV-1 stem-loop 1.

Similar content being viewed by others

References

  1. Palmer, A. G. & Massi, F. Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem. Rev. 106, 1700–1719 (2006)

    CAS  PubMed  Google Scholar 

  2. Baldwin, A. J., Hansen, D. F., Vallurupalli, P. & Kay, L. E. Measurement of methyl axis orientations in invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. J. Am. Chem. Soc. 131, 11939–11948 (2009)

    CAS  PubMed  Google Scholar 

  3. Neudecker, P. et al. Structure of an intermediate state in protein folding and aggregation. Science 336, 362–366 (2012)

    ADS  CAS  PubMed  Google Scholar 

  4. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007)

    ADS  CAS  Google Scholar 

  5. Sugase, K., Dyson, H. J. & Wright, P. E. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021–1025 (2007)

    ADS  CAS  Google Scholar 

  6. Korzhnev, D. M., Religa, T. L., Banachewicz, W., Fersht, A. R. & Kay, L. E. A transient and low-populated protein-folding intermediate at atomic resolution. Science 329, 1312–1316 (2010)

    ADS  CAS  PubMed  Google Scholar 

  7. Li, P., Martins, I. R. S., Amarasinghe, G. K. & Rosen, M. K. Internal dynamics control activation and activity of the autoinhibited Vav DH domain. Nature Struct. Biol. 15, 613–618 (2008)

    CAS  Google Scholar 

  8. Boehr, D. D., McElheny, D., Dyson, H. J. & Wright, P. E. The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313, 1638–1642 (2006)

    ADS  CAS  PubMed  Google Scholar 

  9. Hansen, A. L., Nikolova, E. N., Casiano-Negroni, A. & Al-Hashimi, H. M. Extending the range of microsecond-to-millisecond chemical exchange detected in labeled and unlabeled nucleic acids by selective carbon R(1rho) NMR spectroscopy. J. Am. Chem. Soc. 131, 3818–3819 (2009)

    CAS  PubMed  Google Scholar 

  10. Massi, F., Johnson, E., Wang, C., Rance, M. & Palmer, A. G. NMR R1ρ rotating-frame relaxation with weak radio frequency fields. J. Am. Chem. Soc. 126, 2247–2256 (2004)

    CAS  PubMed  Google Scholar 

  11. Korzhnev, D. M., Orekhov, V. Y. & Kay, L. E. Off-resonance R1ρ NMR studies of exchange dynamics in proteins with low spin-lock fields: An application to a Fyn SH3 domain. J. Am. Chem. Soc. 127, 713–721 (2005)

    CAS  PubMed  Google Scholar 

  12. Nikolova, E. N. et al. Transient Hoogsteen base pairs in canonical duplex DNA. Nature 470, 498–502 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoogstraten, C. G., Wank, J. R. & Pardi, A. Active site dynamics in the lead-dependent ribozyme. Biochemistry 39, 9951–9958 (2000)

    CAS  PubMed  Google Scholar 

  14. Johnson, J. E. & Hoogstraten, C. G. Extensive backbone dynamics in the GCAA RNA tetraloop analyzed using C-13 NMR spin relaxation and specific isotope labeling. J. Am. Chem. Soc. 130, 16757–16769 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Blad, H., Reiter, N. J., Abildgaard, F., Markley, J. L. & Butcher, S. E. Dynamics and metal ion binding in the U6 RNA intramolecular stem-loop as analyzed by NMR. J. Mol. Biol. 353, 540–555 (2005)

    CAS  PubMed  Google Scholar 

  16. Dethoff, E. A. et al. Characterizing complex dynamics in the transactivation response element apical loop and motional correlations with the bulge by NMR, molecular dynamics, and mutagenesis. Biophys. J. 95, 3906–3915 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bannwarth, S. & Gatignol, A. HIV-1 TAR RNA: the target of molecular interactions between the virus and its host. Curr. HIV Res. 3, 61–71 (2005)

    CAS  PubMed  Google Scholar 

  18. Jaeger, J. A. & Tinoco, I., Jr An NMR study of the HIV-1 TAR element hairpin. Biochemistry 32, 12522–12530 (1993)

    CAS  PubMed  Google Scholar 

  19. Kulinski, T. et al. The apical loop of the HIV-1 TAR RNA hairpin is stabilized by a cross-loop base pair. J. Biol. Chem. 278, 38892–38901 (2003)

    CAS  PubMed  Google Scholar 

  20. Farès, C., Amata, I. & Carlomagno, T. 13C-detection in RNA bases: revealing structure-chemical shift relationships. J. Am. Chem. Soc. 129, 15814–15823 (2007)

    PubMed  Google Scholar 

  21. Ghose, R., Marino, J. P., Wiberg, K. B. & Prestegard, J. H. Dependence of 13C chemical shifts on glycosidic torsional angles in ribonucleic acids. J. Am. Chem. Soc. 116, 8827–8828 (1994)

    CAS  Google Scholar 

  22. Nozinovic, S., Furtig, B., Jonker, H. R., Richter, C. & Schwalbe, H. High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res. 38, 683–694 (2010)

    CAS  PubMed  Google Scholar 

  23. Snoussi, K. & Leroy, J.-L. Imino proton exchange and base-pair kinetics in RNA duplexes. Biochemistry 40, 8898–8904 (2001)

    CAS  PubMed  Google Scholar 

  24. Parisien, M. & Major, F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452, 51–55 (2008)

    ADS  CAS  PubMed  Google Scholar 

  25. Legault, P. & Pardi, A. Unusual dynamics and pKa shift at the active site of a lead-dependent ribozyme. J. Am. Chem. Soc. 119, 6621–6628 (1997)

    CAS  Google Scholar 

  26. Feng, S. & Holland, E. C. HIV-1 tat trans-activation requires the loop sequence within tar. Nature 334, 165–167 (1988)

    ADS  CAS  PubMed  Google Scholar 

  27. Berkhout, B. & Jeang, K. T. trans activation of human immunodeficiency virus type 1 is sequence specific for both the single-stranded bulge and loop of the trans-acting-responsive hairpin: a quantitative analysis. J. Virol. 63, 5501–5504 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Richter, S., Cao, H. & Rana, T. M. Specific HIV-1 TAR RNA loop sequence and functional groups are required for human cyclin T1-Tat-TAR ternary complex formation. Biochemistry 41, 6391–6397 (2002)

    CAS  PubMed  Google Scholar 

  29. Yoshizawa, S., Fourmy, D. & Puglisi, J. Recognition of the codon-anticodon helix by ribosomal RNA. Science 285, 1722–1725 (1999)

    CAS  PubMed  Google Scholar 

  30. Schmeing, T. M. & Ramakrishnan, V. What recent ribosome structures have revealed about the mechanism of translation. Nature 461, 1234–1242 (2009)

    ADS  CAS  PubMed  Google Scholar 

  31. Shandrick, S. et al. Monitoring molecular recognition of the ribosomal decoding site. Angew. Chem. Int. Ed. 43, 3177–3182 (2004)

    CAS  Google Scholar 

  32. Fourmy, D., Recht, M., Blanchard, S. & Puglisi, J. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274, 1367–1371 (1996)

    ADS  CAS  PubMed  Google Scholar 

  33. Romanowska, J., Setny, P. & Trylska, J. Molecular dynamics study of the ribosomal A-site. J. Phys. Chem. B 112, 15227–15243 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. O’Connor, M., Thomas, C. L., Zimmermann, R. A. & Dahlberg, A. E. Decoding fidelity at the ribosomal A and P sites: influence of mutations in three different regions of the decoding domain in 16S rRNA. Nucleic Acids Res. 25, 1185–1193 (1997)

    PubMed  PubMed Central  Google Scholar 

  35. Dahlquist, K. D. & Puglisi, J. D. Interaction of translation initiation factor IF1 with the E. coli ribosomal A site. J. Mol. Biol. 299, 1–15 (2000)

    CAS  PubMed  Google Scholar 

  36. Kipper, K., Hetényi, C., Sild, S., Remme, J. & Liiv, A. Ribosomal intersubunit bridge B2a is involved in factor-dependent translation initiation and translational processivity. J. Mol. Biol. 385, 405–422 (2009)

    CAS  PubMed  Google Scholar 

  37. Moore, M. D. & Hu, W.-S. HIV-1 RNA dimerization: It takes two to tango. AIDS Rev. 11, 91–102 (2009)

    PubMed  PubMed Central  Google Scholar 

  38. Clever, J. L. & Parslow, T. G. Mutant human immunodeficiency virus type 1 genomes with defects in RNA dimerization or encapsidation. J. Virol. 71, 3407–3414 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rist, M. J. & Marino, J. P. Mechanism of nucleocapsid protein catalyzed structural isomerization of the dimerization initiation site of HIV-1. Biochemistry 41, 14762–14770 (2002)

    CAS  PubMed  Google Scholar 

  40. Mujeeb, A. et al. Nucleocapsid protein-mediated maturation of dimer initiation complex of full-length SL1 stemloop of HIV-1: sequence effects and mechanism of RNA refolding. Nucleic Acids Res. 35, 2026–2034 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Turner, K. B., Hagan, N. A. & Fabris, D. Understanding the isomerization of the HIV-1 dimerization initiation domain by the nucleocapsid protein. J. Mol. Biol. 369, 812–828 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Takahashi, K. et al. Structural requirement for the two-step dimerization of human immunodeficiency virus type 1 genome. RNA 6, 96–102 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun, X., Zhang, Q. & Al-Hashimi, H. M. Resolving fast and slow motions in the internal loop containing stem-loop 1 of HIV-1 that are modulated by Mg2+ binding: role in the kissing-duplex structural transition. Nucleic Acids Res. 35, 1698–1713 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yuan, Y., Kerwood, D. J., Paoletti, A. C., Shubsda, M. F. & Borer, P. N. Stem of SL1 RNA in HIV-1: structure and nucleocapsid protein binding for a 1 x 3 internal loop. Biochemistry 42, 5259–5269 (2003)

    PubMed  Google Scholar 

  45. Lawrence, D. C., Stover, C. C., Noznitsky, J., Wu, Z. & Summers, M. F. Structure of the intact stem and bulge of HIV-1 Ψ-RNA stem-loop SL1. J. Mol. Biol. 326, 529–542 (2003)

    CAS  PubMed  Google Scholar 

  46. Ulyanov, N. B. NMR structure of the full-length linear dimer of stem-loop-1 RNA in the HIV-1 dimer initiation site. J. Biol. Chem. 281, 16168–16177 (2006)

    CAS  PubMed  Google Scholar 

  47. Breaker, R. R. Prospects for riboswitch discovery and analysis. Mol. Cell 43, 867–879 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dethoff, E. A., Chugh, J., Mustoe, A. M. & Al-Hashimi, H. M. Functional complexity and regulation through RNA dynamics. Nature 482, 322–330 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fourmy, D., Yoshizawa, S. & Puglisi, J. D. Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. J. Mol. Biol. 277, 333–345 (1998)

    CAS  PubMed  Google Scholar 

  50. Delaglio, F. et al. Nmrpipe—a multidimensional spectral processing system based on Unix Pipes. J. Biomol. NMR 6, 277–293 (1995)

    CAS  Google Scholar 

  51. Spyracopoulos, L. A suite of Mathematica notebooks for the analysis of protein main chain 15N NMR relaxation data. J. Biomol. NMR 36, 215–224 (2006)

    CAS  PubMed  Google Scholar 

  52. Meinhold, D. W. & Wright, P. E. Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion. Proc. Natl Acad. Sci. USA 108, 9078–9083 (2011)

    ADS  CAS  PubMed  Google Scholar 

  53. Vallurupalli, P., Bouvignies, G. & Kay, L. E. Increasing the exchange time-scale that can be probed by CPMG relaxation dispersion NMR. J. Phys. Chem. B 115, 14891–14900 (2011)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.A.D., K.P. and J.C contributed equally to this work. We thank members of the Al-Hashimi laboratory for input. We acknowledge the Michigan Economic Development Cooperation and the Michigan Technology Tri-Corridor for the support of the purchase of a 600 MHz spectrometer. K.P. is supported by a postdoctoral Fellowship from the Swedish Research Council (VR-K2011-78PK-21662-0-12). This work was supported by the US National Institutes of Health (R01 AI066975) and by a Rackham Graduate Student Research Grant awarded by the University of Michigan.

Author information

Authors and Affiliations

Authors

Contributions

H.M.A., E.A.D., K.P. and J.C. conceived the approaches to structurally characterize RNA ES and wrote the paper. E.A.D. and K.P. performed all experiments and data analyses for HIV TAR and SL1m, respectively. J.C. with assistance from A.C.-N. performed all experiments and data analyses for the A-site.

Corresponding author

Correspondence to Hashim M. Al-Hashimi.

Ethics declarations

Competing interests

H.M.A. is an advisor to and holds an ownership interest in Nymirum Inc., which is an RNA-based drug discovery company. The research reported in this article was performed by the University of Michigan faculty and students and was funded by an NIH contract to H.M.A.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-8, Supplementary Tables 1-2, a Supplementary Discussion and additional references. (PDF 7758 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dethoff, E., Petzold, K., Chugh, J. et al. Visualizing transient low-populated structures of RNA. Nature 491, 724–728 (2012). https://doi.org/10.1038/nature11498

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11498

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing