Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Black mamba venom peptides target acid-sensing ion channels to abolish pain


Polypeptide toxins have played a central part in understanding physiological and physiopathological functions of ion channels1,2. In the field of pain, they led to important advances in basic research3,4,5,6 and even to clinical applications7,8. Acid-sensing ion channels (ASICs) are generally considered principal players in the pain pathway9, including in humans10. A snake toxin activating peripheral ASICs in nociceptive neurons has been recently shown to evoke pain11. Here we show that a new class of three-finger peptides from another snake, the black mamba, is able to abolish pain through inhibition of ASICs expressed either in central or peripheral neurons. These peptides, which we call mambalgins, are not toxic in mice but show a potent analgesic effect upon central and peripheral injection that can be as strong as morphine. This effect is, however, resistant to naloxone, and mambalgins cause much less tolerance than morphine and no respiratory distress. Pharmacological inhibition by mambalgins combined with the use of knockdown and knockout animals indicates that blockade of heteromeric channels made of ASIC1a and ASIC2a subunits in central neurons and of ASIC1b-containing channels in nociceptors is involved in the analgesic effect of mambalgins. These findings identify new potential therapeutic targets for pain and introduce natural peptides that block them to produce a potent analgesia.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mambalgins represent a new class of three-finger toxins targeting ASIC channels.
Figure 2: Intrathecal injections of mambalgin-1 exert potent naloxone-resistant and ASIC1a-dependent analgesia in mice.
Figure 3: The central analgesic effect of mambalgin-1 shows reduced tolerance compared with morphine, no respiratory depression and involves the ASIC2a subunit.
Figure 4: Intraplantar injections of mambalgin-1 evoke peripheral analgesic effects through ASIC1b-containing channels.

Accession codes

Primary accessions


Data deposits

Mambalgin-1 cDNA and mambalgin-1 and -2 protein sequences have been deposited in GenBank and UniProt Knowledgebase under accession numbers JX428743, B3EWQ5 and B3EWQ4, respectively.


  1. Lewis, R. J. & Garcia, M. L. Therapeutic potential of venom peptides. Nature Rev. Drug Discov. 2, 790–802 (2003)

    CAS  Google Scholar 

  2. Terlau, H. & Olivera, B. M. Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol. Rev. 84, 41–68 (2004)

    CAS  PubMed  Google Scholar 

  3. Deval, E. et al. Acid-sensing ion channels in postoperative pain. J. Neurosci. 31, 6059–6066 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Deval, E. et al. ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J. 27, 3047–3055 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mazzuca, M. et al. A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nature Neurosci. 10, 943–945 (2007)

    CAS  PubMed  Google Scholar 

  6. Vanegas, H. & Schaible, H. Effects of antagonists to high-threshold calcium channels upon spinal mechanisms of pain, hyperalgesia and allodynia. Pain 85, 9–18 (2000)

    CAS  PubMed  Google Scholar 

  7. Schmidtko, A., Lotsch, J., Freynhagen, R. & Geisslinger, G. Ziconotide for treatment of severe chronic pain. Lancet 375, 1569–1577 (2010)

    CAS  PubMed  Google Scholar 

  8. Malmberg, A. B. & Yaksh, T. L. Effect of continuous intrathecal infusion of omega-conopeptides, N-type calcium-channel blockers, on behavior and antinociception in the formalin and hot-plate tests in rats. Pain 60, 83–90 (1995)

    CAS  PubMed  Google Scholar 

  9. Deval, E. et al. Acid-sensing ion channels (ASICs): pharmacology and implication in pain. Pharmacol. Ther. 128, 549–558 (2010)

    CAS  PubMed  Google Scholar 

  10. Jones, N. G., Slater, R., Cadiou, H., McNaughton, P. & McMahon, S. B. Acid-induced pain and its modulation in humans. J. Neurosci. 24, 10974–10979 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bohlen, C. J. et al. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 479, 410–414 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kini, R. M. & Doley, R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon 56, 855–867 (2010)

    CAS  PubMed  Google Scholar 

  13. Diochot, S. et al. A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J. 23, 1516–1525 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Escoubas, P. et al. Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J. Biol. Chem. 275, 25116–25121 (2000)

    CAS  PubMed  Google Scholar 

  15. Askwith, C. C., Wemmie, J. A., Price, M. P., Rokhlina, T. & Welsh, M. J. Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J. Biol. Chem. 279, 18296–18305 (2004)

    CAS  PubMed  Google Scholar 

  16. Baron, A., Voilley, N., Lazdunski, M. & Lingueglia, E. Acid sensing ion channels in dorsal spinal cord neurons. J. Neurosci. 28, 1498–1508 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lingueglia, E. et al. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J. Biol. Chem. 272, 29778–29783 (1997)

    CAS  PubMed  Google Scholar 

  18. Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. & Lazdunski, M. A proton-gated cation channel involved in acid-sensing. Nature 386, 173–177 (1997)

    ADS  CAS  PubMed  Google Scholar 

  19. Chen, C. C., England, S., Akopian, A. N. & Wood, J. N. A sensory neuron-specific, proton-gated ion channel. Proc. Natl Acad. Sci. USA 95, 10240–10245 (1998)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsetlin, V. Snake venom alpha-neurotoxins and other ‘three-finger’ proteins. Eur. J. Biochem. 264, 281–286 (1999)

    CAS  PubMed  Google Scholar 

  21. Baron, A., Waldmann, R. & Lazdunski, M. ASIC-like, proton-activated currents in rat hippocampal neurons. J. Physiol. (Lond.) 539, 485–494 (2002)

    CAS  Google Scholar 

  22. Sherwood, T. W., Lee, K. G., Gormley, M. G. & Askwith, C. C. Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. J. Neurosci. 31, 9723–9734 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bassler, E. L., Ngo-Anh, T. J., Geisler, H. S., Ruppersberg, J. P. & Grunder, S. Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J. Biol. Chem. 276, 33782–33787 (2001)

    CAS  PubMed  Google Scholar 

  24. Fromy, B., Lingueglia, E., Sigaudo-Roussel, D., Saumet, J. L. & Lazdunski, M. Asic3 is a neuronal mechanosensor for pressure-induced vasodilation that protects against pressure ulcers. Nature Med. 18, 1205–1207 (2012)

    CAS  PubMed  Google Scholar 

  25. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Woolf, C. J. Overcoming obstacles to developing new analgesics. Nature Med. 16, 1241–1247 (2010)

    ADS  CAS  PubMed  Google Scholar 

  27. Wemmie, J. A. et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34, 463–477 (2002)

    CAS  PubMed  Google Scholar 

  28. Konig, M. et al. Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383, 535–538 (1996)

    ADS  CAS  PubMed  Google Scholar 

  29. Jasti, J., Furukawa, H., Gonzales, E. B. & Gouaux, E. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449, 316–323 (2007)

    ADS  CAS  PubMed  Google Scholar 

  30. Schweitz, H., Bidard, J. N. & Lazdunski, M. Purification and pharmacological characterization of peptide toxins from the black mamba (Dendroaspis polylepis) venom. Toxicon 28, 847–856 (1990)

    CAS  PubMed  Google Scholar 

  31. Chen, T. et al. Unmasking venom gland transcriptomes in reptile venoms. Anal. Biochem. 311, 152–156 (2002)

    CAS  PubMed  Google Scholar 

  32. Nakashima, K. et al. Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes. Proc. Natl Acad. Sci. USA 92, 5605–5609 (1995)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Douguet, D. & Labesse, G. Easier threading through web-based comparisons and cross-validations. Bioinformatics 17, 752–753 (2001)

    CAS  PubMed  Google Scholar 

  34. Soding, J. Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 (2005)

    PubMed  Google Scholar 

  35. Zhou, H. & Zhou, Y. SPARKS 2 and SP3 servers in CASP6. Proteins 61 (suppl. 7). 152–156 (2005)

    CAS  PubMed  Google Scholar 

  36. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi, J., Blundell, T. L. & Mizuguchi, K. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310, 243–257 (2001)

    CAS  PubMed  Google Scholar 

  38. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Labesse, G. & Mornon, J. Incremental threading optimization (TITO) to help alignment and modelling of remote homologues. Bioinformatics 14, 206–211 (1998)

    CAS  PubMed  Google Scholar 

  40. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    CAS  PubMed  Google Scholar 

  41. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fitzjohn, S. M. et al. An electrophysiological characterisation of long-term potentiation in cultured dissociated hippocampal neurones. Neuropharmacology 41, 693–699 (2001)

    CAS  PubMed  Google Scholar 

  43. Mamet, J., Baron, A., Lazdunski, M. & Voilley, N. Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J. Neurosci. 22, 10662–10670 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We are grateful to M. P. Price and M. J. Welsh for their gift of the ASIC1a–/– mice, to A. Zimmer for providing the Penk1–/– mice, to H. Schweitz and L. Beress for their gift of pre-purified peptidic fractions of black mamba venom, to J. Noël for cultures of hippocampal neurons and comments, to E. Deval, P. Inquimbert, A. Delaunay and M. Christin for discussions, to C. Heurteaux and N. Blondeau for help with stereotaxic injections, to A. Lazzari for support with plethysmography, to V. Thieffin, N. Leroudier, S. Boulakirba, T. Lemaire, C. Karoutchi and G. Marrane for technical assistance, and to C. Chevance for secretarial assistance. We thank E. Bourinet, F. Rassendren and M. B. Emerit for providing the Cav3.2, P2X2 and 5-HT3A cDNAs, respectively. This work was supported by the Fondation pour la Recherche Medicale, the Association Française contre les Myopathies and the Agence Nationale de la Recherche. Part of this work has been supported by EMMAservice under European Union contract Grant Agreement number 227490 of the EC FP7 Capacities Specific Programme.

Author information

Authors and Affiliations



S.D. and A.B. conducted a large part of the experiments including the screening and high-performance liquid chromatography purification of mambalgins (S.D.) and pain experiments, analysed the data and participated to the preparation of the manuscript. M.S. conducted the cloning of mambalgin cDNA and electrophysiological experiments. D. Douguet realized the three-dimensional modelling. S.S., A.-S.D.-G. and D. Debayle performed the mass spectrometry experiments and the amino-acid sequencing. V.F. performed validation of the siRNAs and provided technical support. A.A. was associated with pain behaviour experiments. M.L. contributed to initial aspects of the work and participated in the final preparation of the manuscript. E.L. supervised the project and participated in data analysis and manuscript preparation.

Corresponding authors

Correspondence to Anne Baron or Eric Lingueglia.

Ethics declarations

Competing interests

M. Lazdunski is a founder of Theralpha and the president of its scientific advisory board. The company has taken an option on the mambalgin patent. The other authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-12 and additional references. (PDF 1888 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Diochot, S., Baron, A., Salinas, M. et al. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 490, 552–555 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing