Membrane-based processes for sustainable power generation using water

Abstract

Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Comparison of PRO and RED systems.
Figure 2: A heat engine.
Figure 3: An MFC stack.
Figure 4: Hybrid systems could allow further energy recovery.

References

  1. 1

    Yip, N. Y. & Elimelech, M. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis. Environ. Sci. Technol. 46, 5230–5239 (2012). This paper provides a thorough analysis of the fraction of energy accessible from mixing of fresh river water with sea water for conversion to usable work.

    ADS  CAS  Google Scholar 

  2. 2

    Pattle, R. E. Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature 174, 660 (1954).

    ADS  CAS  Google Scholar 

  3. 3

    Ramon, G. Z., Feinberg, B. J. & Hoek, E. M. V. Membrane-based production of salinity-gradient power. Energy Environ. Sci. 4, 4423–4434 (2011).

    CAS  Google Scholar 

  4. 4

    Lee, K. P., Arnot, T. C. & Mattia, D. A review of reverse osmosis membrane materials for desalination — development to date and future potential. J. Memb. Sci. 370, 1–22 (2011).

    CAS  Google Scholar 

  5. 5

    Chou, S. et al. Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density. J. Memb. Sci. 389, 25–33 (2012).

    CAS  Google Scholar 

  6. 6

    Post, J. W., Hamelers, H. V. M. & Buisman, C. J. N. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system. Environ. Sci. Technol. 42, 5785–5790 (2008).

    ADS  CAS  Google Scholar 

  7. 7

    Veerman, J., Saakes, M., Metz, S. J. & Harmsen, G. J. Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant. Environ. Sci. Technol. 44, 9207–9212 (2010).

    ADS  CAS  Google Scholar 

  8. 8

    Brogioli, D. Extracting renewable energy from a salinity difference using a capacitor. Phys. Rev. Lett. 103, 058501 (2009).

    ADS  PubMed  Google Scholar 

  9. 9

    La Mantia, F., Pasta, M., Deshazer, H. D., Logan, B. E. & Cui, Y. Batteries for efficient energy extraction from a water salinity difference. Nano Lett. 11, 1810–1813 (2011).

    ADS  CAS  PubMed  Google Scholar 

  10. 10

    Sales, B. B. et al. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell. Environ. Sci. Technol. 44, 5661–5665 (2010).

    ADS  CAS  PubMed  Google Scholar 

  11. 11

    McCutcheon, J. R., McGinnis, R. L. & Elimelech, M. A novel ammonia–carbon dioxide forward (direct) osmosis desalination process. Desalination 174, 1–11 (2005).

    CAS  Google Scholar 

  12. 12

    McGinnis, R. L., McCutcheon, J. R. & Elimelech, M. A novel ammonia–carbon dioxide osmotic heat engine for power generation. J. Memb. Sci. 305, 13–19 (2007). This article proposes a closed-loop PRO system for power generation using a thermolytic draw solution and low-grade heat.

    CAS  Google Scholar 

  13. 13

    Cusick, R. D., Kim, Y. & Logan, B. E. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells. Science 335, 1474–1477 (2012). This article describes a hybrid system that uses MFC technology to provide favourable electrode reactions, allowing the efficient capture of salinity-gradient energy.

    ADS  CAS  PubMed  Google Scholar 

  14. 14

    Logan, B. E. & Regan, J. M. Microbial fuel cells — challenges and applications. Environ. Sci. Technol. 40, 5172–5180 (2006).

    ADS  CAS  PubMed  Google Scholar 

  15. 15

    Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nature Rev. Microbiol. 7, 375–381 (2009).

    CAS  Google Scholar 

  16. 16

    McCarty, P. L., Bae, J. & Kim, J. Domestic wastewater treatment as a net energy producer — can this be achieved? Environ. Sci. Technol. 45, 7100–7106 (2011).

    ADS  CAS  PubMed  Google Scholar 

  17. 17

    Perlack, R. D. et al. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: the Technical Feasibility of a Billion-ton Annual Supply (Oak Ridge National Laboratory, 2005).

  18. 18

    Lalaurette, E., Thammannagowda, S., Mohagheghi, A., Maness, P.-C. & Logan, B. E. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int. J. Hydrogen Energy 34, 6201–6210 (2009).

    CAS  Google Scholar 

  19. 19

    Lu, L., Ren, N., Xing, D. & Logan, B. E. Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens. Bioelectron. 24, 3055–3060 (2009).

    CAS  PubMed  Google Scholar 

  20. 20

    Kim, Y. & Logan, B. E. Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells. Proc. Natl Acad. Sci. USA 108, 16176–16181 (2011).

    ADS  CAS  PubMed  Google Scholar 

  21. 21

    Kim, Y. & Logan, B. E. Microbial reverse electrodialysis cells for synergistically enhanced power production. Environ. Sci. Technol. 45, 5834–5839 (2011).

    ADS  CAS  PubMed  Google Scholar 

  22. 22

    Achilli, A. & Childress, A. E. Pressure retarded osmosis: From the vision of Sidney Loeb to the first prototype installation — Review. Desalination 261, 205–211 (2010).

    CAS  Google Scholar 

  23. 23

    Nijmeijer, K. & Metz, S. in Sustainability Science and Engineering Vol. 2 95–139 (Elsevier, 2010).

    Google Scholar 

  24. 24

    Thorsen, T. & Holt, T. The potential for power production from salinity gradients by pressure retarded osmosis. J. Memb. Sci. 335, 103–110 (2009).

    CAS  Google Scholar 

  25. 25

    Achilli, A., Cath, T. Y. & Childress, A. E. Selection of inorganic-based draw solutions for forward osmosis applications. J. Memb. Sci. 364, 233–241 (2010).

    CAS  Google Scholar 

  26. 26

    Lee, K. L., Baker, R. W. & Lonsdale, H. K. Membranes for power-generation by pressure-retarded osmosis. J. Memb. Sci. 8, 141–171 (1981). This paper describes the basis for analysing the performance limiting effects of membranes in PRO.

    CAS  Google Scholar 

  27. 27

    Gerstandt, K., Peinemann, K. V., Skilhagen, S. E., Thorsen, T. & Holt, T. Membrane processes in energy supply for an osmotic power plant. Desalination 224, 64–70 (2008).

    CAS  Google Scholar 

  28. 28

    Cath, T. Y., Childress, A. E. & Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Memb. Sci. 281, 70–87 (2006).

    CAS  Google Scholar 

  29. 29

    Yip, N. Y., Tiraferri, A., Phillip, W. A., Schiffman, J. D. & Elimelech, M. High performance thin-film composite forward osmosis membrane. Environ. Sci. Technol. 44, 3812–3818 (2010).

    ADS  CAS  PubMed  Google Scholar 

  30. 30

    Yip, N. Y. et al. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environ. Sci. Technol. 45, 4360–4369 (2011).

    ADS  CAS  PubMed  Google Scholar 

  31. 31

    Achilli, A., Cath, T. Y. & Childress, A. E. Power generation with pressure retarded osmosis: an experimental and theoretical investigation. J. Memb. Sci. 343, 42–52 (2009).

    CAS  Google Scholar 

  32. 32

    Zhao, S., Zou, L., Tang, C. Y. & Mulcahy, D. Recent developments in forward osmosis: opportunities and challenges. J. Memb. Sci. 396, 1–21 (2012).

    CAS  Google Scholar 

  33. 33

    Yip, N. Y. & Elimelech, M. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis. Environ. Sci. Technol. 45, 10273–10282 (2011).

    ADS  CAS  PubMed  Google Scholar 

  34. 34

    Skilhagen, S. E. Osmotic power — a new, renewable energy source. Desalin. Water Treat. 15, 271–278 (2010).

    Google Scholar 

  35. 35

    Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    ADS  CAS  PubMed  Google Scholar 

  36. 36

    Veerman, J., Saakes, M., Metz, S. J. & Harmsen, G. J. Reverse electrodialysis: evaluation of suitable electrode systems. J. Appl. Electrochem. 40, 1461–1474 (2010). This paper reports the production of a very high power density using RED and a large stack of membranes, owing mainly to an optimized cell design.

    CAS  Google Scholar 

  37. 37

    Veerman, J., Saakes, M., Metz, S. J. & Harmsen, G. J. Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water. J. Memb. Sci. 327, 136–144 (2009).

    CAS  Google Scholar 

  38. 38

    Veerman, J., de Jong, R. M., Saakes, M., Metz, S. J. & Harmsen, G. J. Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density. J. Memb. Sci. 343, 7–15 (2009).

    CAS  Google Scholar 

  39. 39

    Vermaas, D. A., Saakes, M. & Nijmeijer, K. Doubled power density from salinity gradients at reduced intermembrane distances. Environ. Sci. Technol. 45, 7089–7095 (2011). This article describes how ion-exchange membranes are configured to also act as spacers, decreasing hydraulic friction and allowing greater flexibility in stack design.

    ADS  CAS  PubMed  Google Scholar 

  40. 40

    Długołecki, P., Dabrowska, J., Nijmeijer, K. & Wessling, M. Ion conductive spacers for increased power generation in reverse electrodialysis. J. Memb. Sci. 347, 101–107 (2010).

    Google Scholar 

  41. 41

    Vermaas, D. A., Saakes, M. & Nijmeijer, K. Power generation using profiled membranes in reverse electrodialysis. J. Memb. Sci. 385386, 234–242 (2011).

    Google Scholar 

  42. 42

    Xu, Y., Peng, X., Tang, C. Y., Fu, Q. S. & Nie, S. Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module. J. Memb. Sci. 348, 298–309 (2010).

    CAS  Google Scholar 

  43. 43

    Loeb, S. Method and apparatus for generating power utilizing pressure-retarded osmosis. US Patent 4, 193, 267 (1980).

    Google Scholar 

  44. 44

    McGinnis, R. L. & Elimelech, M. Global challenges in energy and water supply: the promise of engineered osmosis. Environ. Sci. Technol. 42, 8625–8629 (2008).

    ADS  CAS  PubMed  Google Scholar 

  45. 45

    McGinnis, R. L. & Elimelech, M. Energy requirements of ammonia-carbon dioxide forward osmosis desalination. Desalination. 207, 370–382 (2007).

    CAS  Google Scholar 

  46. 46

    Alkhudhiri, A., Darwish, N. & Hilal, N. Membrane distillation: a comprehensive review. Desal. 287, 2–18 (2012).

    CAS  Google Scholar 

  47. 47

    Souhaimi, M. K. & Matsuura, T. Membrane Distillation: Principles and Applications (Elsevier, 2011).

    Google Scholar 

  48. 48

    Heidrich, E. S., Curtis, T. P. & Dolfing, J. Determination of the internal chemical energy of wastewater. Environ. Sci. Technol. 45, 827–832 (2011).

    ADS  CAS  PubMed  Google Scholar 

  49. 49

    Logan, B. E. et al. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181–5192 (2006).

    ADS  CAS  PubMed  Google Scholar 

  50. 50

    Logan, B. E. Microbial Fuel Cells. (Wiley Blackwell, 2008).

    Google Scholar 

  51. 51

    Logan, B. E., Cheng, S., Watson, V. & Estadt, G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 41, 3341–3346 (2007).

    ADS  CAS  PubMed  Google Scholar 

  52. 52

    Liu, H. & Logan, B. E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38, 4040–4046 (2004).

    ADS  CAS  PubMed  Google Scholar 

  53. 53

    Fan, Y., Sharbrough, E. & Liu, H. Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol. 42, 8101–8107 (2008). This paper provides a thorough analysis of the factors that limit power production in MFCs.

    ADS  CAS  PubMed  Google Scholar 

  54. 54

    Fan, Y., Hu, H. & Liu, H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Technol. 41, 8154–8158 (2007).

    ADS  CAS  PubMed  Google Scholar 

  55. 55

    Xie, X. et al. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy Environ. Sci. 5, 5265–5270 (2012).

    CAS  Google Scholar 

  56. 56

    Dekker, A., Heijne, A. T., Saakes, M., Hamelers, H. V. M. & Buisman, C. J. N. Analysis and improvement of a scaled-up and stacked microbial fuel cell. Environ. Sci. Technol. 43, 9038–9042 (2009).

    ADS  CAS  PubMed  Google Scholar 

  57. 57

    Logan, B. E. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 85, 1665–1671 (2010).

    CAS  PubMed  Google Scholar 

  58. 58

    Jiang, D. et al. A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. Int. J. Hydrogen Energy 36, 876–884 (2011).

    CAS  Google Scholar 

  59. 59

    Liu, H., Cheng, S., Huang, L. & Logan, B. E. Scale up of a single-chamber microbial fuel cell through optimization of the anode to cathode area ratio. J. Power Sources 179, 274–279 (2008).

    ADS  CAS  Google Scholar 

  60. 60

    Cheng, S. & Logan, B. E. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour. Technol. 102, 4468–4473 (2011).

    CAS  PubMed  Google Scholar 

  61. 61

    ter Heijne, A., Hamelers, H. V. M., de Wilde, V., Rozendal, R. R. & Buisman, C. J. N. Ferric iron reduction as an alternative for platinum-based cathodes in microbial fuel cells. Environ. Sci. Technol. 40, 5200–5205 (2006).

    ADS  CAS  PubMed  Google Scholar 

  62. 62

    Clauwaert, P. et al. Biological denitrification in microbial fuel cells. Environ. Sci. Technol. 41, 3354–3360 (2007).

    ADS  CAS  PubMed  Google Scholar 

  63. 63

    Heijne, A. T. et al. Copper recovery combined with electricity production in a microbial fuel cell. Environ. Sci. Technol. 44, 4376–4381 (2010).

    ADS  PubMed  Google Scholar 

  64. 64

    Zhang, B., Feng, C., Ni, J., Zhang, J. & Huang, W. Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology. J. Power Sources 204, 34–39 (2012).

    CAS  Google Scholar 

  65. 65

    Liu, H., Grot, S. & Logan, B. E. Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 39, 4317–4320 (2005).

    ADS  CAS  PubMed  Google Scholar 

  66. 66

    Rozendal, R. A., Hamelers, H. V. M., Euverink, G. J. W., Metz, S. J. & Buisman, C. J. N. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrogen Energy 31, 1632–1640 (2006).

    CAS  Google Scholar 

  67. 67

    Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, A. M. & Lovley, D. R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1, e00103–10 (2010).

    PubMed  PubMed Central  Google Scholar 

  68. 68

    Rabaey, K. & Rozendal, R. A. Microbial electrosynthesis — revisiting the electrical route for microbial production. Nature Rev. Microbiol. 8, 706–716 (2010).

    CAS  Google Scholar 

  69. 69

    Nevin, K. P. et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl. Environ. Microbiol. 77, 2882–2886 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Ren, Z., Ward, T. E. & Regan, J. M. Electricity production from cellulose in a microbial fuel cell using a defined binary culture and an undefined mixed culture. Environ. Sci. Technol. 41, 4781–4786 (2007).

    ADS  CAS  PubMed  Google Scholar 

  71. 71

    Velásquez-Orta, S. B., Curtis, T. P. & Logan, B. E. Energy from algae using microbial fuel cells. Biotechnol. Bioeng. 103, 1068–1076 (2009).

    PubMed  Google Scholar 

  72. 72

    Pant, D., Bogaert, G. V., Diels, L. & Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 101, 1533–1543 (2009).

    PubMed  Google Scholar 

  73. 73

    Borole, A. P. Improving energy efficiency and enabling water recycling in biorefineries using bioelectrochemical systems. Biofuels, Bioprod. Bioref. 5, 28–36 (2011).

    CAS  Google Scholar 

  74. 74

    Zhang, F., Cheng, S., Pant, D., Bogaert, G. V. & Logan, B. E. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem. Commun. 11, 2177–2179 (2009).

    CAS  Google Scholar 

  75. 75

    Zhang, F., Pant, D. & Logan, B. E. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosens. Bioelectron. 30, 49–55 (2011).

    PubMed  Google Scholar 

  76. 76

    Cath, T. Y., Childress, A. E. & Martinetti, C. R. Combined membrane-distillation-forward-osmosis systems and methods of use. US Patent 8, 029, 671 (2011).

    Google Scholar 

  77. 77

    Hoover, L. A., Phillip, W. A., Tiraferri, A., Yip, N. Y. & Elimelech, M. Forward with osmosis: Emerging applications for greater sustainability. Environ. Sci. Technol. 45, 9824–9830 (2011).

    ADS  CAS  PubMed  Google Scholar 

  78. 78

    Lay, W. C. L. et al. Study of integration of forward osmosis and biological process: membrane performance under elevated salt environment. Desalination. 283, 123–130 (2011).

    CAS  Google Scholar 

  79. 79

    Zhang, F., Brastad, K. S. & He, Z. Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation. Environ. Sci. Technol. 45, 6690–6696 (2011).

    ADS  CAS  PubMed  Google Scholar 

  80. 80

    Nam, J.-Y., Cusick, R. D., Kim, Y. & Logan, B. E. Hydrogen generation in microbial reverse-electrodialysis electrolysis cells using a heat-regenerated salt solution. Environ. Sci. Technol. 46, 5240–5246 (2012).

    ADS  CAS  PubMed  Google Scholar 

  81. 81

    Stoughton, R. W. & Lietzke, M. H. Calculation of some thermodynamic properties of sea salt solutions at elevated temperatures from data on NaCl solutions. J. Chem. Eng. Data 10, 254–260 (1965).

    CAS  Google Scholar 

  82. 82

    Wick, G. L. & Isaacs, J. D. Salt domes: is there more energy available from their salt than from their oil? Science 199, 1436–1437 (1978).

    ADS  CAS  PubMed  Google Scholar 

  83. 83

    Loeb, S. Osmotic power plants. Science 189, 654–655 (1975).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the King Abdullah University of Science and Technology (KAUST) by Award KUS-I1-003-13 (BEL), and the World Class University (WCU) Program (Case III) through the National Research Foundation of Korea and the Ministry of Education, Science and Technology (R33-10046) (ME).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bruce E. Logan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Logan, B., Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012). https://doi.org/10.1038/nature11477

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.