Materials interface engineering for solution-processed photovoltaics


Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility. Rapid progress in their development has increased their solar-power conversion efficiencies. The nanometre (electron) and micrometre (photon) scale interfaces between the crystalline domains that make up solution-processed solar cells are crucial for efficient charge transport. These interfaces include large surface area junctions between photoelectron donors and acceptors, the intralayer grain boundaries within the absorber, and the interfaces between photoactive layers and the top and bottom contacts. Controlling the collection and minimizing the trapping of charge carriers at these boundaries is crucial to efficiency.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Solution-processed photovoltaics.
Figure 2: Photovoltaic principles and performance.
Figure 3: Solution-processed solar cell architectures.
Figure 4: Analysis of interface morphology and electronic properties.
Figure 5: Progress in solution-processed photovoltaic device performance.


  1. 1

    Nazeeruddin, M. K., Baranoff, E. & Grätzel, M. Dye-sensitized solar cells: a brief overview. Solar Energy 85, 1172–1178 (2011). This article provides a review of DSSCs.

    ADS  CAS  Google Scholar 

  2. 2

    Nelson, J. Polymer: fullerene bulk heterojunction solar cells. Mater. Today 14, 462–470 (2011). This review is an overview of organic and polymer solar cells.

    CAS  Google Scholar 

  3. 3

    Todorov, T. & Mitzi, D. B. Direct liquid coating of chalcopyrite light absorbing layers for photovoltaic devices. Eur. J. Inorg. Chem. 2010, 17–28 (2010). This article reviews inorganic solution-processed solar cells.

    Google Scholar 

  4. 4

    Sargent, E. H. Colloidal quantum dot solar cells. Nature Photon 6, 133–135 (2012). This article is a recent review of colloidal quantum-dot solar cells.

    ADS  CAS  Google Scholar 

  5. 5

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    ADS  CAS  Google Scholar 

  6. 6

    O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). This is a seminal paper on DSSCs, reporting an early major advance in performance.

    ADS  CAS  Google Scholar 

  7. 7

    Grätzel, M. Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788–1798 (2009).

    PubMed  Google Scholar 

  8. 8

    Shaheen, S.E. et al. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841843 (2001). This is the first report of a bulk heterojunction used in organic polymer solar cells.

    Google Scholar 

  9. 9

    Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995). This is a seminal paper on polymer photovoltaics, reporting the benefits to be achieved at the bulk heterojunction.

    ADS  CAS  Google Scholar 

  10. 10

    Maturová, K., van Bavel, S. S., Wienk, M. M., Janssen, R. A. J. & Kemerink, M. Description of the morphology dependent charge transport and performance of polymer:fullerene bulk heterojunction solar cells. Adv. Funct. Mater. 21, 261–269 (2011).

    Google Scholar 

  11. 11

    Yang, X. et al. Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 5, 579–583 (2005).

    ADS  CAS  PubMed  Google Scholar 

  12. 12

    Oosterhout, S. D. et al. The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. Nature Mater. 8, 818–824 (2009). This article is an in-depth investigation of how interface morphology affects polymer solar-cell performance.

    ADS  CAS  Google Scholar 

  13. 13

    Koleilat, G. I. et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2, 833–840 (2008).

    CAS  PubMed  Google Scholar 

  14. 14

    Clifford, J. P. et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nature Nanotechnol. 4, 40–44 (2009).

    ADS  CAS  Google Scholar 

  15. 15

    Barkhouse, D. A. R. et al. Depleted bulk heterojunction colloidal quantum dot photovoltaics. Adv. Mater. 23, 3134–3138 (2011).

    CAS  PubMed  Google Scholar 

  16. 16

    Kramer, I. J. et al. Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. Adv. Mater. 24, 2315–2319 (2012).

    CAS  PubMed  Google Scholar 

  17. 17

    Persson, P., Lundqvist, M. J., Ernstorfer, R., Goddard, W. A. III & Willig, F. Quantum chemical calculations of the influence of anchor-cum-spacer groups on femtosecond electron transfer times in dye-sensitized semiconductor nanocrystals. J. Chem. Theory Comput. 2, 441–451 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Yella, A. et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011).

    ADS  CAS  PubMed  Google Scholar 

  19. 19

    Bisquert, J. Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 106, 325–333 (2001).

    Google Scholar 

  20. 20

    Wang, Q. et al. Characteristics of high efficiency dye-sensitized solar cells. J. Phys. Chem. B 110, 25210–25221 (2006).

    CAS  PubMed  Google Scholar 

  21. 21

    Villanueva-Cab, J., Wang, H., Oskam, G. & Peter, L. M. Electron diffusion and back reaction in dye-sensitized solar cells: the effect of nonlinear recombination kinetics. J. Phys. Chem. Lett. 1, 748–751 (2010).

    CAS  Google Scholar 

  22. 22

    Fabregat-Santiago, F. et al. Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor. J. Am. Chem. Soc. 131, 558–562 (2009).

    CAS  PubMed  Google Scholar 

  23. 23

    Mora-Seró, I. et al. Recombination in quantum dot sensitized solar cells. Acc. Chem. Res. 42, 1848–1857 (2009).

    PubMed  Google Scholar 

  24. 24

    Klem, E. J. D., MacNeil, D. D., Cyr, P. W., Levina, L. & Sargent, E. H. Efficient solution-processed infrared photovoltaic cells: planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution. Appl. Phys. Lett. 90, 183113 (2007).

    ADS  Google Scholar 

  25. 25

    Johnston, K. W. et al. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 92, 151115 (2008).

    ADS  Google Scholar 

  26. 26

    Johnston, K. W. et al.. Efficient Schottky-quantum-dot photovoltaics: the roles of depletion, drift, and diffusion. Appl. Phys. Lett. 92, 122111 (2008).

    ADS  Google Scholar 

  27. 27

    Pattantyus-Abraham, A. G. et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4, 3374–3380 (2010). This article reports the first colloidal quantum-dot solar cell to exceed 5% solar power conversion efficiency and the architecture that has allowed its subsequent advances.

    CAS  PubMed  Google Scholar 

  28. 28

    Liu, H. et al. Electron acceptor materials engineering in colloidal quantum dot solar cells. Adv. Mater. 23, 3832–3837 (2011).

    CAS  PubMed  Google Scholar 

  29. 29

    Hyun, B. R. et al. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano 2, 2206–2212 (2008).

    CAS  PubMed  Google Scholar 

  30. 30

    Koleilat, G. I. et al. A donor-supply electrode (DSE) for colloidal quantum dot photovoltaics. Nano Lett. 11, 5173–5178 (2011).

    ADS  CAS  PubMed  Google Scholar 

  31. 31

    Minemoto, T. et al. Cu(In,Ga)Se2 solar cells with controlled conduction band offset of window/Cu(In,Ga)Se2 layers. J. Appl. Phys. 89, 8327–8330 (2001).

    ADS  CAS  Google Scholar 

  32. 32

    Haight, R. et al. Band alignment at the Cu2 ZnSn (SxSe1-x)4 /CdS interface. Appl. Phys. Lett. 98, 253502 (2011).

    ADS  Google Scholar 

  33. 33

    Barkhouse, D. A. R. et al. Cd-free buffer layer materials on Cu2ZnSn(SxSe1- x)4: Band alignments with ZnO, ZnS, and In2S3 . Appl. Phys. Lett. 100, 193904–193905 (2012).

    ADS  Google Scholar 

  34. 34

    Wada, T., Kohara, N., Nishiwaki, S. & Negami, T. Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells. Thin Solid Films 387, 118–122 (2001).

    ADS  CAS  Google Scholar 

  35. 35

    Rockett, A. The effect of Na in polycrystalline and epitaxial single-crystal CuIn 1-xGaxSe2 . Thin Solid Films 480–481, 2–7 (2005).

    ADS  Google Scholar 

  36. 36

    Brabec, C. J. et al. Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem. Phys. Lett. 340, 232–236 (2001).

    ADS  CAS  Google Scholar 

  37. 37

    Veldman, D. et al. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends. J. Am. Chem. Soc. 130, 7721–7735 (2008).

    CAS  PubMed  Google Scholar 

  38. 38

    Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O. & Manca, J. V. On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nature Mater. 8, 904–909 (2009).

    ADS  CAS  Google Scholar 

  39. 39

    Gélinas, S. et al. The binding energy of charge-transfer excitons localized at polymeric semiconductor heterojunctions. J. Phys. Chem. C 115, 7114–7119 (2011).

    Google Scholar 

  40. 40

    Lee, J. et al. Charge transfer state versus hot exciton dissociation in polymer-fullerene blended solar cells. J. Am. Chem. Soc. 132, 11878–11880 (2010).

    CAS  PubMed  Google Scholar 

  41. 41

    Maturová, K., Janssen, R. A. J. & Kemerink, M. Connecting scanning tunneling spectroscopy to device performance for polymer:fullerene organic solar cells. ACS Nano 4, 1385–1392 (2010).

    PubMed  Google Scholar 

  42. 42

    He, Z. et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 23, 4636–4643 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    O'Malley, K. M., Li, C.-Z., Yip, H.-L. & Jen, A. K. Y. Enhanced open-circuit voltage in high performance polymer/fullerene bulk-heterojunction solar cells by cathode modification with a C60 surfactant. Adv. Energy Mater. 2, 82–86 (2012).

    CAS  Google Scholar 

  44. 44

    Irwin, M. D., Buchholz, D. B., Hains, A. W., Chang, R. P. H. & Marks, T. J. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl Acad. Sci. USA 105, 2783–2787 (2008).

    ADS  CAS  Google Scholar 

  45. 45

    Murray, I. P. et al. Graphene oxide interlayers for robust, high-efficiency organic photovoltaics. J. Phys. Chem. Lett. 2, 3006–3012 (2011).

    CAS  Google Scholar 

  46. 46

    Gilot, J., Wienk, M. M. & Janssen, R. A. J. Double and triple junction polymer solar cells processed from solution. Appl. Phys. Lett. 90, 143512 (2007).

    ADS  Google Scholar 

  47. 47

    Jin, Y. K. et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007).

    ADS  Google Scholar 

  48. 48

    McDonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Mater. 4, 138–142 (2005).

    ADS  CAS  Google Scholar 

  49. 49

    Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    ADS  CAS  PubMed  Google Scholar 

  50. 50

    Konstantatos, G., Clifford, J., Levina, L. & Sargent, E. H. Sensitive solution-processed visible-wavelength photodetectors. Nature Photonics 1, 531–534 (2007).

    ADS  CAS  Google Scholar 

  51. 51

    Barkhouse, D. A. R., Pattantyus-Abraham, A. G., Levina, L. & Sargent, E. H. Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. ACS Nano 2, 2356–2362 (2008).

    CAS  PubMed  Google Scholar 

  52. 52

    Tang, J. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Mater. 10, 765–771 (2011).

    ADS  CAS  Google Scholar 

  53. 53

    Jeong, K. S. et al. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano 6, 89–99 (2011).

    PubMed  Google Scholar 

  54. 54

    Nagpal, P. & Klimov, V. I. Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films. Nature Commun. 2, 486, (2011).

  55. 55

    Hibberd, C. J. et al. Non-vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers. Prog. Photovolt. Res. Appl. 18, 434–452 (2010).

    CAS  Google Scholar 

  56. 56

    Katagiri, H. et al. Development of CZTS-based thin film solar cells. Thin Solid Films 517, 2455–2460 (2009).

    ADS  CAS  Google Scholar 

  57. 57

    Scragg, J. J., Ericson, T., Kubart, T., Edoff, M. & Platzer-Björkman, C. Chemical insights into the instability of Cu2ZnSnS4 films during annealing. Chem. Mater. 23, 4625–4633 (2011).

    CAS  Google Scholar 

  58. 58

    Yuan, M. et al. Antimony assisted low-temperature processing of CuIn1-XGaxSe2-ySy solar cells. Thin Solid Films 519, 852–856 (2010).

    ADS  CAS  Google Scholar 

  59. 59

    Liao, D. & Rockett, A. Cd doping at the CuinSe2/CdS heterojunction. J. Appl. Phys. 93, 9380–9382 (2003).

    ADS  CAS  Google Scholar 

  60. 60

    Rusu, M. et al. Three-dimensional structure of the buffer/absorber interface in CdS/ CuGaSe2 based thin film solar cells. Appl. Phys. Lett. 95, 173502 (2009).

    ADS  Google Scholar 

  61. 61

    Hetzer, M. J. et al. Direct observation of copper depletion and potential changes at copper indium gallium diselenide grain boundaries. Appl. Phys. Lett. 86, 162105 (2005).

    ADS  Google Scholar 

  62. 62

    Mitzi, D. B. et al. Hydrazine-based deposition route for device-quality CIGS films. Thin Solid Films 517, 2158–2162 (2009).

    ADS  CAS  Google Scholar 

  63. 63

    Chen, S., Gong, X. G., Walsh, A. & Wei, S. H. Defect physics of the kesterite thin-film solar cell absorber Cu2 ZnSnS4 . Appl. Phys. Lett. 96, 021902 (2010).

    ADS  Google Scholar 

  64. 64

    Cao, Q. et al. Defects in Cu(In,Ga)Se2 chalcopyrite semiconductors: a comparative study of material properties, defect states, and photovoltaic performance. Adv. Energy Mater. 1, 845–853 (2011).

    CAS  Google Scholar 

  65. 65

    Guha, S. et al. Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity. Appl. Phys. Lett. 74, 1860–1862 (1999).

    ADS  CAS  Google Scholar 

  66. 66

    Heath, J. T., Cohen, J. D. & Shafarman, W. N. Bulk and metastable defects in CuIn1-xGaxSe2 thin films using drive-level capacitance profiling. J. Appl. Phys. 95, 1000–1010 (2004).

    ADS  CAS  Google Scholar 

  67. 67

    Han, L. et al. High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy Environ. Sci. 5, 6057–6060 (2012).

    CAS  Google Scholar 

  68. 68

    Feldt, S. M. et al. Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. J. Am. Chem. Soc. 132, 16714–16724 (2010).

    CAS  PubMed  Google Scholar 

  69. 69

    Dou, L. et al. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics 6, 180–185 (2012).

    ADS  CAS  Google Scholar 

  70. 70

    Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 39). Prog. Photovolt. Res. Appl. 20, 12–20 (2012).

    Google Scholar 

  71. 71

    Luther, J. M. et al. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488–3492 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Wang, X. et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nature Photonics 5, 480–484 (2011). This article reports the first optimized tandem cell to use quantum size tuning alone to achieve the desired bandgaps in the constituent junctions.

    ADS  CAS  Google Scholar 

  73. 73

    Todorov, T. K., Reuter, K. B. & Mitzi, D. B. High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv. Mater. 22, E156–E159 (2010).

    CAS  PubMed  Google Scholar 

  74. 74

    Guo, Q., Ford, G. M., Hillhouse, H. W. & Agrawal, R. in Proc. 37th IEEE Photovoltaic Specialist Conf. 003522–003526. (IEEE, 2011).

    Google Scholar 

  75. 75

    Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).

    ADS  CAS  Google Scholar 

  76. 76

    Ma, W., Yang, C., Gong, X., Lee, K. & Heeger, A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005).

    CAS  Google Scholar 

  77. 77

    Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon. 3, 297–302 (2009).

    ADS  CAS  Google Scholar 

  78. 78

    Kapoor, V. K., Fisher, M. & Roe, R. Mat. Res. Soc. Symp. Proc. H261–H267 (Material Research Society, 2001).

    Google Scholar 

  79. 79

    Van Duren, J. K. J., Leidholm, C., Pudov, A., Robinson, M. R. & Roussillon, Y. Materials Research Society Symp. Proc. 259–268 (Material Research Society, 2002).

  80. 80

    Todorov, T. K., Gunawan, O., Gokmen, T. & Mitzi, D. B. Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell. Prog. Photovolt. Res. Appl. (2012).

  81. 81

    Barkhouse, D. A. R., Gunawan, O., Gokmen, T., Todorov, T. K. & Mitzi, D. B. Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell. Prog. Photovolt. Res. Appl. 20, 6–11 (2012).

    CAS  Google Scholar 

  82. 82

    Arakawa, H. Y. T., Okada, K., Matsui, K., Kitamura, T., Tanabe, N. Highly durable dye-sensitized solar cells. Fujikura Tech. Rev. 2009, 55–59 (2009).

    Google Scholar 

  83. 83

    Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Gunawan, O., Todorov, T. K. & Mitzi, D. B. Loss mechanisms in hydrazine-processed Cu2 ZnSn (Se,S)4 solar cells. Appl. Phys. Lett. 97, 233506 (2010).

    ADS  Google Scholar 

  85. 85

    Veldman, D., Meskers, S. C. J. & Janssen, R. A. J. The energy of charge-transfer states in electron donor-acceptor blends: insight into the energy losses in organic solar cells. Adv. Funct. Mater. 19, 1939–1948 (2009).

    CAS  Google Scholar 

  86. 86

    Voznyy, O. Mobile surface traps in CdSe nanocrystals with carboxylic acid ligands. J. Phys. Chem. C 115, 15927–15932 (2011).

    CAS  Google Scholar 

  87. 87

    Puzder, A., Williamson, A. J., Gygi, F. & Galli, G. Self-healing of CdSe nanocrystals: first-principles calculations. Phys. Rev. Lett. 92, 217401 (2004).

    ADS  PubMed  Google Scholar 

  88. 88

    Yu, M. et al. First principles study of CdSe quantum dots: stability, surface unsaturations, and experimental validation. Appl. Phys. Lett. 88, 231910 (2006).

    ADS  Google Scholar 

  89. 89

    Frenzel, J., Joswig, J. O., Sarkar, P., Seifert, G. & Springborg, M. The effects of organisation, embedding and surfactants on the properties of cadmium chalcogenide (CdS, CdSe and CdS/CdSe) semiconductor nanoparticles. Eur. J. Inorg. Chem. 2005, 3585–3596 (2005).

    Google Scholar 

  90. 90

    Yablonovitch, E. & Cody, G. D. Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron. Dev. 29, 300–305 (1982).

    ADS  Google Scholar 

  91. 91

    Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    ADS  CAS  Google Scholar 

  92. 92

    Ferry, V. E. et al. Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells. Nano Lett. 11, 4239–4245 (2011).

    ADS  CAS  PubMed  Google Scholar 

  93. 93

    Pillai, S., Catchpole, K. R., Trupke, T. & Green, M. A. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007).

    ADS  Google Scholar 

  94. 94

    Yang, J. et al. Plasmonic polymer tandem solar cell. ACS Nano 5, 6210–6217 (2011).

    CAS  PubMed  Google Scholar 

  95. 95

    Brown, M. D. et al. Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett. 11, 438–445 (2011).

    ADS  CAS  PubMed  Google Scholar 

  96. 96

    Klem, E. J. D. et al. Planar PbS quantum dot/C60 heterojunction photovoltaic devices with 5.2% power conversion efficiency. Appl. Phys. Lett. 100, 173109 (2012).

    ADS  Google Scholar 

Download references


E.H.S acknowledges that this Review is based, in part, on work supported by an award (no. KUS-11-009-21) made by King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. E.H.S acknowledges the contribution of I. Kramer, S. Thon and O. Voznyy to the figures and text. M.G. acknowledges that this Review is based, in part, on work supported by the Stanford University Center of Advanced Molecular Photovoltaics (CAMP) under an award (no. KUSC1-015-21) made by KAUST and by the European Research Council (ERC) under the Advanced Research Grant No. 247404 (Mesolight project).

Author information



Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Graetzel, M., Janssen, R., Mitzi, D. et al. Materials interface engineering for solution-processed photovoltaics. Nature 488, 304–312 (2012).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.