Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Materials interface engineering for solution-processed photovoltaics

Abstract

Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility. Rapid progress in their development has increased their solar-power conversion efficiencies. The nanometre (electron) and micrometre (photon) scale interfaces between the crystalline domains that make up solution-processed solar cells are crucial for efficient charge transport. These interfaces include large surface area junctions between photoelectron donors and acceptors, the intralayer grain boundaries within the absorber, and the interfaces between photoactive layers and the top and bottom contacts. Controlling the collection and minimizing the trapping of charge carriers at these boundaries is crucial to efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solution-processed photovoltaics.
Figure 2: Photovoltaic principles and performance.
Figure 3: Solution-processed solar cell architectures.
Figure 4: Analysis of interface morphology and electronic properties.
Figure 5: Progress in solution-processed photovoltaic device performance.

Similar content being viewed by others

References

  1. Nazeeruddin, M. K., Baranoff, E. & Grätzel, M. Dye-sensitized solar cells: a brief overview. Solar Energy 85, 1172–1178 (2011). This article provides a review of DSSCs.

    Article  ADS  CAS  Google Scholar 

  2. Nelson, J. Polymer: fullerene bulk heterojunction solar cells. Mater. Today 14, 462–470 (2011). This review is an overview of organic and polymer solar cells.

    Article  CAS  Google Scholar 

  3. Todorov, T. & Mitzi, D. B. Direct liquid coating of chalcopyrite light absorbing layers for photovoltaic devices. Eur. J. Inorg. Chem. 2010, 17–28 (2010). This article reviews inorganic solution-processed solar cells.

    Article  CAS  Google Scholar 

  4. Sargent, E. H. Colloidal quantum dot solar cells. Nature Photon 6, 133–135 (2012). This article is a recent review of colloidal quantum-dot solar cells.

    Article  ADS  CAS  Google Scholar 

  5. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  ADS  CAS  Google Scholar 

  6. O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). This is a seminal paper on DSSCs, reporting an early major advance in performance.

    Article  ADS  CAS  Google Scholar 

  7. Grätzel, M. Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788–1798 (2009).

    Article  PubMed  CAS  Google Scholar 

  8. Shaheen, S.E. et al. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841843 (2001). This is the first report of a bulk heterojunction used in organic polymer solar cells.

    Article  CAS  Google Scholar 

  9. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995). This is a seminal paper on polymer photovoltaics, reporting the benefits to be achieved at the bulk heterojunction.

    Article  ADS  CAS  Google Scholar 

  10. Maturová, K., van Bavel, S. S., Wienk, M. M., Janssen, R. A. J. & Kemerink, M. Description of the morphology dependent charge transport and performance of polymer:fullerene bulk heterojunction solar cells. Adv. Funct. Mater. 21, 261–269 (2011).

    Article  CAS  Google Scholar 

  11. Yang, X. et al. Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 5, 579–583 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Oosterhout, S. D. et al. The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. Nature Mater. 8, 818–824 (2009). This article is an in-depth investigation of how interface morphology affects polymer solar-cell performance.

    Article  ADS  CAS  Google Scholar 

  13. Koleilat, G. I. et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2, 833–840 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Clifford, J. P. et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nature Nanotechnol. 4, 40–44 (2009).

    Article  ADS  CAS  Google Scholar 

  15. Barkhouse, D. A. R. et al. Depleted bulk heterojunction colloidal quantum dot photovoltaics. Adv. Mater. 23, 3134–3138 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Kramer, I. J. et al. Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. Adv. Mater. 24, 2315–2319 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Persson, P., Lundqvist, M. J., Ernstorfer, R., Goddard, W. A. III & Willig, F. Quantum chemical calculations of the influence of anchor-cum-spacer groups on femtosecond electron transfer times in dye-sensitized semiconductor nanocrystals. J. Chem. Theory Comput. 2, 441–451 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Yella, A. et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Bisquert, J. Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 106, 325–333 (2001).

    Article  CAS  Google Scholar 

  20. Wang, Q. et al. Characteristics of high efficiency dye-sensitized solar cells. J. Phys. Chem. B 110, 25210–25221 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Villanueva-Cab, J., Wang, H., Oskam, G. & Peter, L. M. Electron diffusion and back reaction in dye-sensitized solar cells: the effect of nonlinear recombination kinetics. J. Phys. Chem. Lett. 1, 748–751 (2010).

    Article  CAS  Google Scholar 

  22. Fabregat-Santiago, F. et al. Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor. J. Am. Chem. Soc. 131, 558–562 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Mora-Seró, I. et al. Recombination in quantum dot sensitized solar cells. Acc. Chem. Res. 42, 1848–1857 (2009).

    Article  PubMed  CAS  Google Scholar 

  24. Klem, E. J. D., MacNeil, D. D., Cyr, P. W., Levina, L. & Sargent, E. H. Efficient solution-processed infrared photovoltaic cells: planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution. Appl. Phys. Lett. 90, 183113 (2007).

    Article  ADS  CAS  Google Scholar 

  25. Johnston, K. W. et al. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 92, 151115 (2008).

    Article  ADS  CAS  Google Scholar 

  26. Johnston, K. W. et al.. Efficient Schottky-quantum-dot photovoltaics: the roles of depletion, drift, and diffusion. Appl. Phys. Lett. 92, 122111 (2008).

    Article  ADS  CAS  Google Scholar 

  27. Pattantyus-Abraham, A. G. et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4, 3374–3380 (2010). This article reports the first colloidal quantum-dot solar cell to exceed 5% solar power conversion efficiency and the architecture that has allowed its subsequent advances.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, H. et al. Electron acceptor materials engineering in colloidal quantum dot solar cells. Adv. Mater. 23, 3832–3837 (2011).

    CAS  PubMed  Google Scholar 

  29. Hyun, B. R. et al. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano 2, 2206–2212 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Koleilat, G. I. et al. A donor-supply electrode (DSE) for colloidal quantum dot photovoltaics. Nano Lett. 11, 5173–5178 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Minemoto, T. et al. Cu(In,Ga)Se2 solar cells with controlled conduction band offset of window/Cu(In,Ga)Se2 layers. J. Appl. Phys. 89, 8327–8330 (2001).

    Article  ADS  CAS  Google Scholar 

  32. Haight, R. et al. Band alignment at the Cu2 ZnSn (SxSe1-x)4 /CdS interface. Appl. Phys. Lett. 98, 253502 (2011).

    Article  ADS  CAS  Google Scholar 

  33. Barkhouse, D. A. R. et al. Cd-free buffer layer materials on Cu2ZnSn(SxSe1- x)4: Band alignments with ZnO, ZnS, and In2S3 . Appl. Phys. Lett. 100, 193904–193905 (2012).

    Article  ADS  CAS  Google Scholar 

  34. Wada, T., Kohara, N., Nishiwaki, S. & Negami, T. Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells. Thin Solid Films 387, 118–122 (2001).

    Article  ADS  CAS  Google Scholar 

  35. Rockett, A. The effect of Na in polycrystalline and epitaxial single-crystal CuIn 1-xGaxSe2 . Thin Solid Films 480–481, 2–7 (2005).

    Article  ADS  CAS  Google Scholar 

  36. Brabec, C. J. et al. Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem. Phys. Lett. 340, 232–236 (2001).

    Article  ADS  CAS  Google Scholar 

  37. Veldman, D. et al. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends. J. Am. Chem. Soc. 130, 7721–7735 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O. & Manca, J. V. On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nature Mater. 8, 904–909 (2009).

    Article  ADS  CAS  Google Scholar 

  39. Gélinas, S. et al. The binding energy of charge-transfer excitons localized at polymeric semiconductor heterojunctions. J. Phys. Chem. C 115, 7114–7119 (2011).

    Article  CAS  Google Scholar 

  40. Lee, J. et al. Charge transfer state versus hot exciton dissociation in polymer-fullerene blended solar cells. J. Am. Chem. Soc. 132, 11878–11880 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Maturová, K., Janssen, R. A. J. & Kemerink, M. Connecting scanning tunneling spectroscopy to device performance for polymer:fullerene organic solar cells. ACS Nano 4, 1385–1392 (2010).

    Article  PubMed  CAS  Google Scholar 

  42. He, Z. et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 23, 4636–4643 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. O'Malley, K. M., Li, C.-Z., Yip, H.-L. & Jen, A. K. Y. Enhanced open-circuit voltage in high performance polymer/fullerene bulk-heterojunction solar cells by cathode modification with a C60 surfactant. Adv. Energy Mater. 2, 82–86 (2012).

    Article  CAS  Google Scholar 

  44. Irwin, M. D., Buchholz, D. B., Hains, A. W., Chang, R. P. H. & Marks, T. J. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl Acad. Sci. USA 105, 2783–2787 (2008).

    Article  ADS  CAS  PubMed Central  Google Scholar 

  45. Murray, I. P. et al. Graphene oxide interlayers for robust, high-efficiency organic photovoltaics. J. Phys. Chem. Lett. 2, 3006–3012 (2011).

    Article  CAS  Google Scholar 

  46. Gilot, J., Wienk, M. M. & Janssen, R. A. J. Double and triple junction polymer solar cells processed from solution. Appl. Phys. Lett. 90, 143512 (2007).

    Article  ADS  CAS  Google Scholar 

  47. Jin, Y. K. et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007).

    Article  ADS  CAS  Google Scholar 

  48. McDonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Mater. 4, 138–142 (2005).

    Article  ADS  CAS  Google Scholar 

  49. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Konstantatos, G., Clifford, J., Levina, L. & Sargent, E. H. Sensitive solution-processed visible-wavelength photodetectors. Nature Photonics 1, 531–534 (2007).

    Article  ADS  CAS  Google Scholar 

  51. Barkhouse, D. A. R., Pattantyus-Abraham, A. G., Levina, L. & Sargent, E. H. Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. ACS Nano 2, 2356–2362 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Tang, J. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Mater. 10, 765–771 (2011).

    Article  ADS  CAS  Google Scholar 

  53. Jeong, K. S. et al. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano 6, 89–99 (2011).

    Article  PubMed  CAS  Google Scholar 

  54. Nagpal, P. & Klimov, V. I. Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films. Nature Commun. 2, 486, http://dx.doi.org/10.1038/ncomms1492 (2011).

  55. Hibberd, C. J. et al. Non-vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers. Prog. Photovolt. Res. Appl. 18, 434–452 (2010).

    Article  CAS  Google Scholar 

  56. Katagiri, H. et al. Development of CZTS-based thin film solar cells. Thin Solid Films 517, 2455–2460 (2009).

    Article  ADS  CAS  Google Scholar 

  57. Scragg, J. J., Ericson, T., Kubart, T., Edoff, M. & Platzer-Björkman, C. Chemical insights into the instability of Cu2ZnSnS4 films during annealing. Chem. Mater. 23, 4625–4633 (2011).

    Article  CAS  Google Scholar 

  58. Yuan, M. et al. Antimony assisted low-temperature processing of CuIn1-XGaxSe2-ySy solar cells. Thin Solid Films 519, 852–856 (2010).

    Article  ADS  CAS  Google Scholar 

  59. Liao, D. & Rockett, A. Cd doping at the CuinSe2/CdS heterojunction. J. Appl. Phys. 93, 9380–9382 (2003).

    Article  ADS  CAS  Google Scholar 

  60. Rusu, M. et al. Three-dimensional structure of the buffer/absorber interface in CdS/ CuGaSe2 based thin film solar cells. Appl. Phys. Lett. 95, 173502 (2009).

    Article  ADS  CAS  Google Scholar 

  61. Hetzer, M. J. et al. Direct observation of copper depletion and potential changes at copper indium gallium diselenide grain boundaries. Appl. Phys. Lett. 86, 162105 (2005).

    Article  ADS  CAS  Google Scholar 

  62. Mitzi, D. B. et al. Hydrazine-based deposition route for device-quality CIGS films. Thin Solid Films 517, 2158–2162 (2009).

    Article  ADS  CAS  Google Scholar 

  63. Chen, S., Gong, X. G., Walsh, A. & Wei, S. H. Defect physics of the kesterite thin-film solar cell absorber Cu2 ZnSnS4 . Appl. Phys. Lett. 96, 021902 (2010).

    Article  ADS  CAS  Google Scholar 

  64. Cao, Q. et al. Defects in Cu(In,Ga)Se2 chalcopyrite semiconductors: a comparative study of material properties, defect states, and photovoltaic performance. Adv. Energy Mater. 1, 845–853 (2011).

    Article  CAS  Google Scholar 

  65. Guha, S. et al. Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity. Appl. Phys. Lett. 74, 1860–1862 (1999).

    Article  ADS  CAS  Google Scholar 

  66. Heath, J. T., Cohen, J. D. & Shafarman, W. N. Bulk and metastable defects in CuIn1-xGaxSe2 thin films using drive-level capacitance profiling. J. Appl. Phys. 95, 1000–1010 (2004).

    Article  ADS  CAS  Google Scholar 

  67. Han, L. et al. High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy Environ. Sci. 5, 6057–6060 (2012).

    Article  CAS  Google Scholar 

  68. Feldt, S. M. et al. Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. J. Am. Chem. Soc. 132, 16714–16724 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Dou, L. et al. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics 6, 180–185 (2012).

    Article  ADS  CAS  Google Scholar 

  70. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 39). Prog. Photovolt. Res. Appl. 20, 12–20 (2012).

    Article  Google Scholar 

  71. Luther, J. M. et al. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488–3492 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Wang, X. et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nature Photonics 5, 480–484 (2011). This article reports the first optimized tandem cell to use quantum size tuning alone to achieve the desired bandgaps in the constituent junctions.

    Article  ADS  CAS  Google Scholar 

  73. Todorov, T. K., Reuter, K. B. & Mitzi, D. B. High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv. Mater. 22, E156–E159 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Guo, Q., Ford, G. M., Hillhouse, H. W. & Agrawal, R. in Proc. 37th IEEE Photovoltaic Specialist Conf. 003522–003526. (IEEE, 2011).

    Google Scholar 

  75. Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).

    Article  ADS  CAS  Google Scholar 

  76. Ma, W., Yang, C., Gong, X., Lee, K. & Heeger, A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005).

    Article  CAS  Google Scholar 

  77. Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon. 3, 297–302 (2009).

    Article  ADS  CAS  Google Scholar 

  78. Kapoor, V. K., Fisher, M. & Roe, R. Mat. Res. Soc. Symp. Proc. H261–H267 (Material Research Society, 2001).

    Google Scholar 

  79. Van Duren, J. K. J., Leidholm, C., Pudov, A., Robinson, M. R. & Roussillon, Y. Materials Research Society Symp. Proc. 259–268 (Material Research Society, 2002).

  80. Todorov, T. K., Gunawan, O., Gokmen, T. & Mitzi, D. B. Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell. Prog. Photovolt. Res. Appl. http://dx.doi.org/10.1002/pip.1253 (2012).

  81. Barkhouse, D. A. R., Gunawan, O., Gokmen, T., Todorov, T. K. & Mitzi, D. B. Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell. Prog. Photovolt. Res. Appl. 20, 6–11 (2012).

    Article  CAS  Google Scholar 

  82. Arakawa, H. Y. T., Okada, K., Matsui, K., Kitamura, T., Tanabe, N. Highly durable dye-sensitized solar cells. Fujikura Tech. Rev. 2009, 55–59 (2009).

    Google Scholar 

  83. Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Gunawan, O., Todorov, T. K. & Mitzi, D. B. Loss mechanisms in hydrazine-processed Cu2 ZnSn (Se,S)4 solar cells. Appl. Phys. Lett. 97, 233506 (2010).

    Article  ADS  CAS  Google Scholar 

  85. Veldman, D., Meskers, S. C. J. & Janssen, R. A. J. The energy of charge-transfer states in electron donor-acceptor blends: insight into the energy losses in organic solar cells. Adv. Funct. Mater. 19, 1939–1948 (2009).

    Article  CAS  Google Scholar 

  86. Voznyy, O. Mobile surface traps in CdSe nanocrystals with carboxylic acid ligands. J. Phys. Chem. C 115, 15927–15932 (2011).

    Article  CAS  Google Scholar 

  87. Puzder, A., Williamson, A. J., Gygi, F. & Galli, G. Self-healing of CdSe nanocrystals: first-principles calculations. Phys. Rev. Lett. 92, 217401 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  88. Yu, M. et al. First principles study of CdSe quantum dots: stability, surface unsaturations, and experimental validation. Appl. Phys. Lett. 88, 231910 (2006).

    Article  ADS  CAS  Google Scholar 

  89. Frenzel, J., Joswig, J. O., Sarkar, P., Seifert, G. & Springborg, M. The effects of organisation, embedding and surfactants on the properties of cadmium chalcogenide (CdS, CdSe and CdS/CdSe) semiconductor nanoparticles. Eur. J. Inorg. Chem. 2005, 3585–3596 (2005).

    Article  CAS  Google Scholar 

  90. Yablonovitch, E. & Cody, G. D. Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron. Dev. 29, 300–305 (1982).

    Article  ADS  Google Scholar 

  91. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  ADS  CAS  Google Scholar 

  92. Ferry, V. E. et al. Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells. Nano Lett. 11, 4239–4245 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Pillai, S., Catchpole, K. R., Trupke, T. & Green, M. A. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007).

    Article  ADS  CAS  Google Scholar 

  94. Yang, J. et al. Plasmonic polymer tandem solar cell. ACS Nano 5, 6210–6217 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Brown, M. D. et al. Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett. 11, 438–445 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Klem, E. J. D. et al. Planar PbS quantum dot/C60 heterojunction photovoltaic devices with 5.2% power conversion efficiency. Appl. Phys. Lett. 100, 173109 (2012).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

E.H.S acknowledges that this Review is based, in part, on work supported by an award (no. KUS-11-009-21) made by King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. E.H.S acknowledges the contribution of I. Kramer, S. Thon and O. Voznyy to the figures and text. M.G. acknowledges that this Review is based, in part, on work supported by the Stanford University Center of Advanced Molecular Photovoltaics (CAMP) under an award (no. KUSC1-015-21) made by KAUST and by the European Research Council (ERC) under the Advanced Research Grant No. 247404 (Mesolight project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graetzel, M., Janssen, R., Mitzi, D. et al. Materials interface engineering for solution-processed photovoltaics. Nature 488, 304–312 (2012). https://doi.org/10.1038/nature11476

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11476

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing