Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dopaminergic neurons inhibit striatal output through non-canonical release of GABA


The substantia nigra pars compacta and ventral tegmental area contain the two largest populations of dopamine-releasing neurons in the mammalian brain. These neurons extend elaborate projections in the striatum, a large subcortical structure implicated in motor planning and reward-based learning. Phasic activation of dopaminergic neurons in response to salient or reward-predicting stimuli is thought to modulate striatal output through the release of dopamine to promote and reinforce motor action1,2,3,4. Here we show that activation of dopamine neurons in striatal slices rapidly inhibits action potential firing in both direct- and indirect-pathway striatal projection neurons through vesicular release of the inhibitory transmitter GABA (γ-aminobutyric acid). GABA is released directly from dopaminergic axons but in a manner that is independent of the vesicular GABA transporter VGAT. Instead, GABA release requires activity of the vesicular monoamine transporter VMAT2, which is the vesicular transporter for dopamine. Furthermore, VMAT2 expression in GABAergic neurons lacking VGAT is sufficient to sustain GABA release. Thus, these findings expand the repertoire of synaptic mechanisms used by dopamine neurons to influence basal ganglia circuits, show a new substrate whose transport is dependent on VMAT2 and demonstrate that GABA can function as a bona fide co-transmitter in monoaminergic neurons.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: DA neuron stimulation inhibits SPNs.
Figure 2: DA neurons directly release GABA onto SPNs.
Figure 3: GABA release from DA neurons requires VMAT2 but not VGAT.
Figure 4: VMAT2 functions as a vesicular GABA transporter.


  1. 1

    Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998)

    CAS  Article  Google Scholar 

  2. 2

    Wickens, J. R., Reynolds, J. N. & Hyland, B. I. Neural mechanisms of reward-related motor learning. Curr. Opin. Neurobiol. 13, 685–690 (2003)

    CAS  Article  Google Scholar 

  3. 3

    Gerfen, C. R. & Surmeier, D. J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441–466 (2011)

    CAS  Article  Google Scholar 

  4. 4

    Palmiter, R. D. Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann. NY Acad. Sci. 1129, 35–46 (2008)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989)

    CAS  Article  Google Scholar 

  6. 6

    Dagher, A. & Robbins, T. W. Personality, addiction, dopamine: insights from Parkinson’s disease. Neuron 61, 502–510 (2009)

    CAS  Article  Google Scholar 

  7. 7

    Sulzer, D. How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 69, 628–649 (2011)

    CAS  Article  Google Scholar 

  8. 8

    Bentivoglio, M. & Morei, M. in Handbook of Chemical Neuroanatomy – Dopamine Vol. 21, 1–107 (Elsevier, 2005)

    Google Scholar 

  9. 9

    Chuhma, N. et al. Dopamine neurons mediate a fast excitatory signal via their glutamatergic synapses. J. Neurosci. 24, 972–981 (2004)

    CAS  Article  Google Scholar 

  10. 10

    Hnasko, T. S. et al. Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65, 643–656 (2010)

    CAS  Article  Google Scholar 

  11. 11

    Tecuapetla, F. et al. Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J. Neurosci. 30, 7105–7110 (2010)

    CAS  Article  Google Scholar 

  12. 12

    Stuber, G. D., Hnasko, T. S., Britt, J. P., Edwards, R. H. & Bonci, A. Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J. Neurosci. 30, 8229–8233 (2010)

    CAS  Article  Google Scholar 

  13. 13

    Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 8, 1263–1268 (2005)

    CAS  Article  Google Scholar 

  14. 14

    Backman, C. M. et al. Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus. Genesis 44, 383–390 (2006)

    CAS  Article  Google Scholar 

  15. 15

    Schmitz, Y., Benoit-Marand, M., Gonon, F. & Sulzer, D. Presynaptic regulation of dopaminergic neurotransmission. J. Neurochem. 87, 273–289 (2003)

    CAS  Article  Google Scholar 

  16. 16

    Sabatini, B. L. & Regehr, W. G. Timing of synaptic transmission. Annu. Rev. Physiol. 61, 521–542 (1999)

    CAS  Article  Google Scholar 

  17. 17

    Gonzalez-Hernandez, T., Barroso-Chinea, P., Acevedo, A., Salido, E. & Rodriguez, M. Colocalization of tyrosine hydroxylase and GAD65 mRNA in mesostriatal neurons. Eur. J. Neurosci. 13, 57–67 (2001)

    CAS  PubMed  Google Scholar 

  18. 18

    Cruikshank, S. J., Urabe, H., Nurmikko, A. V. & Connors, B. W. Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 65, 230–245 (2010)

    CAS  Article  Google Scholar 

  19. 19

    Wojcik, S. M. et al. A shared vesicular carrier allows synaptic corelease of GABA and glycine. Neuron 50, 575–587 (2006)

    CAS  Article  Google Scholar 

  20. 20

    Yelin, R. & Schuldiner, S. The pharmacological profile of the vesicular monoamine transporter resembles that of multidrug transporters. FEBS Lett. 377, 201–207 (1995)

    CAS  Article  Google Scholar 

  21. 21

    Kozorovitskiy, Y., Saunders, A., Johnson, C. A., Lowell, B. B. & Sabatini, B. L. Recurrent network activity drives striatal synaptogenesis. Nature 485, 646–650 (2012)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Berube-Carriere, N. et al. The dual dopamine-glutamate phenotype of growing mesencephalic neurons regresses in mature rat brain. J. Comp. Neurol. 517, 873–891 (2009)

    CAS  Article  Google Scholar 

  23. 23

    Matsuda, W. et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 29, 444–453 (2009)

    CAS  Article  Google Scholar 

  24. 24

    Ramirez, M. & Gutierrez, R. Activity-dependent expression of GAD67 in the granule cells of the rat hippocampus. Brain Res. 917, 139–146 (2001)

    CAS  Article  Google Scholar 

  25. 25

    Gonzalez-Hernandez, T., Barroso-Chinea, P. & Rodriguez, M. Response of the GABAergic and dopaminergic mesostriatal projections to the lesion of the contralateral dopaminergic mesostriatal pathway in the rat. Mov. Disord. 19, 1029–1042 (2004)

    Article  Google Scholar 

  26. 26

    Hirasawa, H., Puopolo, M. & Raviola, E. Extrasynaptic release of GABA by retinal dopaminergic neurons. J. Neurophysiol. 102, 146–158 (2009)

    CAS  Article  Google Scholar 

  27. 27

    Maher, B. J. & Westbrook, G. L. Co-transmission of dopamine and GABA in periglomerular cells. J. Neurophysiol. 99, 1559–1564 (2008)

    CAS  Article  Google Scholar 

  28. 28

    Iijima, K. Chemocytoarchitecture of the rat locus ceruleus. Histol. Histopathol. 8, 581–591 (1993)

    CAS  PubMed  Google Scholar 

  29. 29

    Trottier, S. et al. Co-localization of histamine with GABA but not with galanin in the human tuberomamillary nucleus. Brain Res. 939, 52–64 (2002)

    CAS  Article  Google Scholar 

  30. 30

    Broadbelt, K. G., Paterson, D. S., Rivera, K. D., Trachtenberg, F. L. & Kinney, H. C. Neuroanatomic relationships between the GABAergic and serotonergic systems in the developing human medulla. Auton. Neurosci. 154, 30–41 (2010)

    CAS  Article  Google Scholar 

  31. 31

    Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature Neurosci. 13, 133–140 (2010)

    CAS  Article  Google Scholar 

  33. 33

    Tong, Q. et al. Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. Cell Metab. 5, 383–393 (2007)

    CAS  Article  Google Scholar 

  34. 34

    Tong, Q., Ye, C. P., Jones, J. E., Elmquist, J. K. & Lowell, B. B. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nature Neurosci. 11, 998–1000 (2008)

    CAS  Article  Google Scholar 

  35. 35

    Durieux, P. F. et al. D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nature Neurosci. 12, 393–395 (2009)

    CAS  Article  Google Scholar 

  36. 36

    Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003)

    Article  Google Scholar 

Download references


The authors thank A. Saunders and Y. Kozorovitskiy for generating and characterizing the AAV-DIO-EGFP and AAV-DIO-VGAT constructs, D. Sulzer and H. Zhang for assistance with amperometry, R. Shah and C. Johnson for technical support, and members of the laboratory for discussions. This work was supported by a Nancy Lurie Marks Family Foundation postdoctoral fellowship (N.X.T.) and by grants from the National Institutes of Health (NS046579 to B.L.S. and 4R00NS075136 to J.B.D.).

Author information




N.X.T., J.B.D. and B.L.S. designed the experiments. N.X.T. performed the experiments described in the figures and text and analysed the data. J.B.D. performed experiments that initiated this study, devised the injection coordinates, established amperometric recordings and participated in their acquisition. N.X.T. and B.L.S. wrote the manuscript with contributions from J.B.D.

Corresponding author

Correspondence to Bernardo L. Sabatini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-6 and additional references. (PDF 6655 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tritsch, N., Ding, J. & Sabatini, B. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490, 262–266 (2012).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing