Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pregnancy imprints regulatory memory that sustains anergy to fetal antigen


Pregnancy is an intricately orchestrated process where immune effector cells with fetal specificity are selectively silenced. This requires the sustained expansion of immune-suppressive maternal FOXP3+ regulatory T cells (Treg cells), because even transient partial ablation triggers fetal-specific effector T-cell activation and pregnancy loss1,2. In turn, many idiopathic pregnancy complications proposed to originate from disrupted fetal tolerance are associated with blunted maternal Treg expansion3,4,5. Importantly, however, the antigen specificity and cellular origin of maternal Treg cells that accumulate during gestation remain incompletely defined. Here we show that pregnancy selectively stimulates the accumulation of maternal FOXP3+ CD4 cells with fetal specificity using tetramer-based enrichment that allows the identification of rare endogenous T cells6. Interestingly, after delivery, fetal-specific Treg cells persist at elevated levels, maintain tolerance to pre-existing fetal antigen, and rapidly re-accumulate during subsequent pregnancy. The accelerated expansion of Treg cells during secondary pregnancy was driven almost exclusively by proliferation of fetal-specific FOXP3+ cells retained from prior pregnancy, whereas induced FOXP3 expression and proliferation of pre-existing FOXP3+ cells each contribute to Treg expansion during primary pregnancy. Furthermore, fetal resorption in secondary compared with primary pregnancy becomes more resilient to partial maternal FOXP3+ cell ablation. Thus, pregnancy imprints FOXP3+ CD4 cells that sustain protective regulatory memory to fetal antigen. We anticipate that these findings will spark further investigation on maternal regulatory T-cell specificity that unlocks new strategies for improving pregnancy outcomes and novel approaches for therapeutically exploiting Treg cell memory.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Accumulation of maternal CD4 and FOXP3 + T reg cells with fetal specificity during gestation.
Figure 2: Accelerated expansion of maternal T reg cells with fetal specificity during secondary pregnancy.
Figure 3: The post-partum environment maintains anergy for maternal CD4 cells with pre-existing fetal specificity.
Figure 4: Maternal post-partum T reg cells mitigate IFN-γ responsiveness and mediate resiliency to fetal resorption in secondary pregnancy.


  1. 1

    Kahn, D. A. & Baltimore, D. Pregnancy induces a fetal antigen-specific maternal T regulatory cell response that contributes to tolerance. Proc. Natl Acad. Sci. USA 107, 9299–9304 (2010)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Rowe, J. H., Ertelt, J. M., Aguilera, M. N., Farrar, M. A. & Way, S. S. Foxp3+ regulatory T cell expansion required for sustaining pregnancy compromises host defense against prenatal bacterial pathogens. Cell Host Microbe 10, 54–64 (2011)

    CAS  Article  Google Scholar 

  3. 3

    Prins, J. R. et al. Preeclampsia is associated with lower percentages of regulatory T cells in maternal blood. Hypertens. Pregnancy 28, 300–311 (2009)

    Article  Google Scholar 

  4. 4

    Santner-Nanan, B. et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J. Immunol. 183, 7023–7030 (2009)

    CAS  Article  Google Scholar 

  5. 5

    Sasaki, Y. et al. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod. 10, 347–353 (2004)

    CAS  Article  Google Scholar 

  6. 6

    Moon, J. J. et al. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007)

    CAS  Article  Google Scholar 

  7. 7

    Aluvihare, V. R., Kallikourdis, M. & Betz, A. G. Regulatory T cells mediate maternal tolerance to the fetus. Nature Immunol. 5, 266–271 (2004)

    CAS  Article  Google Scholar 

  8. 8

    Andersen, K. G., Nissen, J. K. & Betz, A. G. Comparative genomics reveals key gain-of-function events in Foxp3 during regulatory T cell evolution. Front. Immunol. 3, 113 (2012)

    CAS  Article  Google Scholar 

  9. 9

    Lathrop, S. K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Shafiani, S., Tucker-Heard, G., Kariyone, A., Takatsu, K. & Urdahl, K. B. Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J. Exp. Med. 207, 1409–1420 (2010)

    CAS  Article  Google Scholar 

  11. 11

    Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012)

    CAS  Article  Google Scholar 

  12. 12

    Wing, K. & Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nature Immunol. 11, 7–13 (2010)

    CAS  Article  Google Scholar 

  13. 13

    Hsieh, C. S., Lee, H. M. & Lio, C. W. Selection of regulatory T cells in the thymus. Nat. Rev. Immunol. 12, 157–167 (2012)

    CAS  Article  Google Scholar 

  14. 14

    Suffia, I. J., Reckling, S. K., Piccirillo, C. A., Goldszmid, R. S. & Belkaid, Y. Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens. J. Exp. Med. 203, 777–788 (2006)

    CAS  Article  Google Scholar 

  15. 15

    Rosenblum, M. D. et al. Response to self antigen imprints regulatory memory in tissues. Nature 480, 538–542 (2011)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Moon, J. J. et al. Quantitative impact of thymic selection on Foxp3+ and Foxp3 subsets of self-peptide/MHC class II-specific CD4+ T cells. Proc. Natl Acad. Sci. USA 108, 14602–14607 (2011)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Robertson, S. A. Immune regulation of conception and embryo implantation-all about quality control? J. Reprod. Immunol. 85, 51–57 (2010)

    CAS  Article  Google Scholar 

  18. 18

    Kallikourdis, M., Andersen, K. G., Welch, K. A. & Betz, A. G. Alloantigen-enhanced accumulation of CCR5+ ‘effector’ regulatory T cells in the gravid uterus. Proc. Natl Acad. Sci. USA 104, 594–599 (2007)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Munoz-Suano, A., Hamilton, A. B. & Betz, A. G. Gimme shelter: the immune system during pregnancy. Immunol. Rev. 241, 20–38 (2011)

    CAS  Article  Google Scholar 

  20. 20

    Thornton, A. M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433–3441 (2010)

    CAS  Article  Google Scholar 

  21. 21

    Gottschalk, R. A., Corse, E. & Allison, J. P. Expression of Helios in peripherally induced Foxp3+ regulatory T cells. J. Immunol. 188, 976–980 (2012)

    CAS  Article  Google Scholar 

  22. 22

    Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nature Immunol. 8, 191–197 (2007)

    CAS  Article  Google Scholar 

  23. 23

    Erlebacher, A., Vencato, D., Price, K. A., Zhang, D. & Glimcher, L. H. Constraints in antigen presentation severely restrict T cell recognition of the allogeneic fetus. J. Clin. Invest. 117, 1399–1411 (2007)

    CAS  Article  Google Scholar 

  24. 24

    Ertelt, J. M. et al. Selective priming and expansion of antigen-specific Foxp3 CD4+ T cells during Listeria monocytogenes infection. J. Immunol. 182, 3032–3038 (2009)

    CAS  Article  Google Scholar 

  25. 25

    Pepper, M. et al. Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nature Immunol. 11, 83–89 (2010)

    CAS  Article  Google Scholar 

  26. 26

    Koch, M. A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nature Immunol. 10, 595–602 (2009)

    CAS  Article  Google Scholar 

  27. 27

    Wakim, L. M. & Bevan, M. J. From the thymus to longevity in the periphery. Curr. Opin. Immunol. 22, 274–278 (2010)

    CAS  Article  Google Scholar 

  28. 28

    Trupin, L. S., Simon, L. P. & Eskenazi, B. Change in paternity: a risk factor for preeclampsia in multiparas. Epidemiology 7, 240–244 (1996)

    CAS  Article  Google Scholar 

  29. 29

    Conde-Agudelo, A. & Belizan, J. M. Maternal morbidity and mortality associated with interpregnancy interval: cross sectional study. BMJ 321, 1255–1259 (2000)

    CAS  Article  Google Scholar 

  30. 30

    Moon, J. J. et al. Tracking epitope-specific T cells. Nature Protocols 4, 565–581 (2009)

    CAS  Article  Google Scholar 

  31. 31

    Wirth, R., An, F. Y. & Clewell, D. B. Highly efficient protoplast transformation system for Streptococcus faecalis and a new Escherichia coli-S. faecalis shuttle vector. J. Bacteriol. 165, 831–836 (1986)

    CAS  Article  Google Scholar 

  32. 32

    Smith, K. & Youngman, P. Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74, 705–711 (1992)

    CAS  Article  Google Scholar 

  33. 33

    Foulds, K. E. et al. Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J. Immunol. 168, 1528–1532 (2002)

    CAS  Article  Google Scholar 

  34. 34

    Rudd, B. D. et al. Nonrandom attrition of the naive CD8+ T-cell pool with aging governed by T-cell receptor:pMHC interactions. Proc. Natl Acad. Sci. USA 108, 13694–13699 (2011)

    ADS  CAS  Article  Google Scholar 

Download references


We thank M. Jenkins for providing 2W1S-expressing mice, and A. Rudensky for providing Foxp3DTR mice. This research was supported by NIH-NIAID awards R01AI087830 and R01AI100934 (S.S.W.), and NIH-NIDDK award F30DK084674 (J.H.R.). S.S.W. holds an Investigator in the Pathogenesis of Infectious Disease award from the Burroughs Wellcome Fund.

Author information




J.H.R., J.M.E., L.X. and S.S.W. designed and performed the experiments, and wrote the paper.

Corresponding author

Correspondence to Sing Sing Way.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-10. (PDF 2223 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rowe, J., Ertelt, J., Xin, L. et al. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature 490, 102–106 (2012).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing