Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila

Abstract

Mitochondrial respiratory function is frequently impaired in human cancers1,2,3,4. However, the mechanisms by which mitochondrial dysfunction contributes to tumour progression remain elusive. Here we show in Drosophila imaginal epithelium that defects in mitochondrial function potently induce tumour progression of surrounding tissue in conjunction with oncogenic Ras. Our data show that Ras activation and mitochondrial dysfunction cooperatively stimulate production of reactive oxygen species, which causes activation of c-Jun amino (N)-terminal kinase (JNK) signalling. JNK cooperates with oncogenic Ras to inactivate the Hippo pathway, leading to upregulation of its targets Unpaired (an interleukin-6 homologue) and Wingless (a Wnt homologue). Mitochondrial dysfunction in Ras-activated cells further cooperates with Ras signalling in neighbouring cells with normal mitochondrial function, causing benign tumours to exhibit metastatic behaviour. Our findings provide a mechanistic basis for interclonal tumour progression driven by mitochondrial dysfunction and oncogenic Ras.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RasV12/mito−/− clones cause non-autonomous overgrowth through JNK-mediated Upd induction.
Figure 2: JNK signalling is activated by oxidative stress in RasV12/mito−/− clones.
Figure 3: Co-activation of JNK and Ras signalling causes upregulation of Upd and Wg through Hippo pathway inactivation.
Figure 4: RasV12/mito−/− clones drive tumour progression of surrounding tumours.

Similar content being viewed by others

References

  1. Brandon, M., Baldi, P. & Wallace, D. C. Mitochondrial mutations in cancer. Oncogene 25, 4647–4662 (2006)

    Article  CAS  Google Scholar 

  2. Carew, J. S. & Huang, P. Mitochondrial defects in cancer. Mol. Cancer 1, 9 (2002)

    Article  Google Scholar 

  3. Modica-Napolitano, J. S., Kulawiec, M. & Singh, K. K. Mitochondria and human cancer. Curr. Mol. Med. 7, 121–131 (2007)

    Article  CAS  Google Scholar 

  4. Pedersen, P. L. Tumor mitochondria and the bioenergetics of cancer cells. Prog. Exp. Tumor Res. 22, 190–274 (1978)

    Article  CAS  Google Scholar 

  5. Bissell, M. J. & Hines, W. C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Med. 17, 320–329 (2011)

    Article  CAS  Google Scholar 

  6. Igaki, T., Pagliarini, R. A. & Xu, T. Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr. Biol. 16, 1139–1146 (2006)

    Article  CAS  Google Scholar 

  7. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999)

    Article  CAS  Google Scholar 

  8. Mandal, S., Guptan, P., Owusu-Ansah, E. & Banerjee, U. Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. Dev. Cell 9, 843–854 (2005)

    Article  CAS  Google Scholar 

  9. Morata, G., Shlevkov, E. & Perez-Garijo, A. Mitogenic signaling from apoptotic cells in Drosophila. Dev. Growth Differ. 53, 168–176 (2011)

    Article  Google Scholar 

  10. Hou, S. X., Zheng, Z., Chen, X. & Perrimon, N. The Jak/STAT pathway in model organisms: emerging roles in cell movement. Dev. Cell 3, 765–778 (2002)

    Article  CAS  Google Scholar 

  11. Giebel, B. & Wodarz, A. Tumor suppressors: control of signaling by endocytosis. Curr. Biol. 16, R91–R92 (2006)

    Article  CAS  Google Scholar 

  12. Jiang, H. et al. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137, 1343–1355 (2009)

    Article  Google Scholar 

  13. Pastor-Pareja, J. C. & Wu, M. and Xu, T. An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis. Model. Mech. 1, 144–154 (2008)

    Article  Google Scholar 

  14. Staley, B. K. & Irvine, K. D. Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr. Biol. 20, 1580–1587 (2010)

    Article  CAS  Google Scholar 

  15. Martin-Blanco, E. et al. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 12, 557–570 (1998)

    Article  CAS  Google Scholar 

  16. Shen, H. M. & Liu, Z. G. JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic. Biol. Med. 40, 928–939 (2006)

    Article  CAS  Google Scholar 

  17. Sykiotis, G. P. & Bohmann, D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev. Cell 14, 76–85 (2008)

    Article  CAS  Google Scholar 

  18. Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Owusu-Ansah, E., Yavari, A., Mandal, S. & Banerjee, U. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nature Genet. 40, 356–361 (2008)

    Article  CAS  Google Scholar 

  20. Pan, D. The hippo signaling pathway in development and cancer. Dev. Cell 19, 491–505 (2010)

    Article  CAS  Google Scholar 

  21. Karpowicz, P., Perez, J. & Perrimon, N. The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 137, 4135–4145 (2010)

    Article  CAS  Google Scholar 

  22. Ren, F. et al. Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc. Natl Acad. Sci. USA 107, 21064–21069 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Shaw, R. L. et al. The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137, 4147–4158 (2010)

    Article  CAS  Google Scholar 

  24. Sun, G. & Irvine, K. D. Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors. Dev. Biol. 350, 139–151 (2011)

    Article  CAS  Google Scholar 

  25. Wu, M., Pastor-Pareja, J. C. & Xu, T. Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature 463, 545–548 (2010)

    Article  ADS  CAS  Google Scholar 

  26. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003)

    Article  CAS  Google Scholar 

  27. Uhlirova, M., Jasper, H. & Bohmann, D. Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proc. Natl Acad. Sci. USA 102, 13123–13128 (2005)

    Article  ADS  CAS  Google Scholar 

  28. Frei, C., Galloni, M., Hafen, E. & Edgar, B. A. The Drosophila mitochondrial ribosomal protein mRpL12 is required for Cyclin D/Cdk4-driven growth. EMBO J. 24, 623–634 (2005)

    Article  CAS  Google Scholar 

  29. Doggett, K., Grusche, F. A., Richardson, H. E. & Brumby, A. M. Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling. BMC Dev. Biol. 11, 57 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Pastor-Pareja and M. Miura for comments on the manuscript; T. Sawada and K. Takino for technical support; D. Harrison, T. Orr-Weaver and H. Richardson for antibodies; T. Adachi-Yamada, U. Banerjee, D. Bohmann, F. Missirlis, M. Miura, H. Sun, T. Xu, Y. Hiromi, the Bloomington Stock Center, the Vienna Drosophila RNAi Center, the National Institute of Genetics Stock Center and the Drosophila Genetic Resource Center for fly stocks. We also thank T. Xu for encouragement. This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) to S.O., M.E. and T.I, a Grant-in-Aid for Scientific Research on Innovative Areas from the MEXT to S.O. and T.I., the Japan Society for the Promotion of Science for Young Scientists to S.O. and M.E., the Japan Science and Technology Agency to T.I., the G-COE program for Global Center for Education and Research in Integrative Membrane Biology to S.O. and T.I.,the Fumi Yamamura Memorial Foundation for Female Natural Scientists to S.O, the Tomizawa Jun-ichi & Keiko Fund of the Molecular Biology Society of Japan for Young Scientists to S.O., the Takeda Science Foundation to S.O. and T.I., the Astellas Foundation for Research on Metabolic Disorders to T.I., the Kanae Foundation for the Promotion of Medical Science to T.I., the Senri Life Science Foundation to T.I. and a Human Frontier Science Program Career Development Award to T.I.

Author information

Authors and Affiliations

Authors

Contributions

S.O., Y.S., M.E. and T.I. designed the research, S.O., Y.S., M.E., M.N., A.B. and T.I. performed experiments, S.O., Y.S., M.E. and T.I. analysed the data, and S.O. and T.I. wrote the manuscript.

Corresponding author

Correspondence to Tatsushi Igaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-13, additional references and the detailed Genotypes for Supplementary Figures 1-13. (PDF 11205 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohsawa, S., Sato, Y., Enomoto, M. et al. Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature 490, 547–551 (2012). https://doi.org/10.1038/nature11452

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11452

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer