Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A single-atom electron spin qubit in silicon


A single atom is the prototypical quantum system, and a natural candidate for a quantum bit, or qubit—the elementary unit of a quantum computer. Atoms have been successfully used to store and process quantum information in electromagnetic traps1, as well as in diamond through the use of the nitrogen–vacancy-centre point defect2. Solid-state electrical devices possess great potential to scale up such demonstrations from few-qubit control to larger-scale quantum processors. Coherent control of spin qubits has been achieved in lithographically defined double quantum dots in both GaAs (refs 3–5) and Si (ref. 6). However, it is a formidable challenge to combine the electrical measurement capabilities of engineered nanostructures with the benefits inherent in atomic spin qubits. Here we demonstrate the coherent manipulation of an individual electron spin qubit bound to a phosphorus donor atom in natural silicon, measured electrically via single-shot read-out7,8,9. We use electron spin resonance to drive Rabi oscillations, and a Hahn echo pulse sequence reveals a spin coherence time exceeding 200 µs. This time should be even longer in isotopically enriched 28Si samples10,11. Combined with a device architecture12 that is compatible with modern integrated circuit technology, the electron spin of a single phosphorus atom in silicon should be an excellent platform on which to build a scalable quantum computer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Qubit device and pulsing scheme.
Figure 2: Rabi oscillations and power dependence of the Rabi frequency.
Figure 3: Coherence time and dynamical decoupling.
Figure 4: Qubit fidelity analysis.


  1. 1

    Biercuk, M. J. et al. Optimized dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009)

    ADS  CAS  Article  Google Scholar 

  2. 2

    van der Sar, T. et al. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 484, 82–86 (2012)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Maune, B. M. et al. Coherent singlet-triplet oscillations in a silicon-based double quantum dot. Nature 481, 344–347 (2012)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  8. 8

    Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Simmons, C. B. et al. Tunable spin loading and T 1 of a silicon spin qubit measured by single-shot readout. Phys. Rev. Lett. 106, 156804 (2011)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Ager, J. W. et al. High-purity, isotopically enriched bulk silicon. J. Electrochem. Soc. 152, G448–G451 (2005)

    CAS  Article  Google Scholar 

  11. 11

    Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high purity silicon. Nature Mater. 11, 143–147 (2012)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Morello, A. et al. Architecture for high-sensitivity single-shot readout and control of the electron spin of individual donors in silicon. Phys. Rev. B 80, 081307(R) (2009)

    ADS  Article  Google Scholar 

  13. 13

    Morton, J. J. L., McCamey, D. R., Eriksson, M. A. & Lyon, S. A. Embracing the quantum limit in silicon computing. Nature 479, 345–353 (2011)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Feher, G. & Gere, E. A. Electron spin resonance experiments on donors in silicon. II. Electron spin relaxation effects. Phys. Rev. 114, 1245–1256 (1959)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Bradbury, F. R. et al. Stark tuning of donor electron spins in silicon. Phys. Rev. Lett. 97, 176404 (2006)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Morton, J. J. L. et al. Solid-state quantum memory using the 31P nuclear spin. Nature 455, 1085–1088 (2008)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Jamieson, D. N. et al. Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions. Appl. Phys. Lett. 86, 202101 (2005)

    ADS  Article  Google Scholar 

  19. 19

    Fuechsle, M. et al. A single-atom transistor. Nature Nanotechnol. 7, 242–246 (2012)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Dehollain, J. P. et al. Nanoscale broadband transmission lines for spin qubit control. Preprint at (2012)

  21. 21

    Xiao, M., Martin, I., Yablonovitch, E. & Jiang, H. W. Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor. Nature 430, 435–439 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  22. 22

    Chiba, M. & Hirai, A. Electron spin echo decay behaviours of phosphorus doped silicon. J. Phys. Soc. Jpn 33, 730–738 (1972)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Witzel, W. M. & Das Sarma, S. Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment. Phys. Rev. B 74, 035322 (2006)

    ADS  Article  Google Scholar 

  24. 24

    Schenkel, T. et al. Electrical activation and electron spin coherence of ultralow dose antimony implants in silicon. Appl. Phys. Lett. 88, 112101 (2006)

    ADS  Article  Google Scholar 

  25. 25

    Tyryshkin, A. M. et al. Coherence of spin qubits in silicon. J. Phys. Condens. Matter 18, S783–S794 (2006)

    CAS  Article  Google Scholar 

  26. 26

    Morello, A., Stamp, P. C. E. & Tupitsyn, I. S. Pairwise decoherence in coupled spin qubit networks. Phys. Rev. Lett. 97, 207206 (2006)

    ADS  Article  Google Scholar 

  27. 27

    Witzel, W. M., Carroll, M. S., Morello, A., Cywiński, Ł. & Das Sarma, S. Electron spin decoherence in isotope-enriched silicon. Phys. Rev. Lett. 105, 187602 (2010)

    ADS  Article  Google Scholar 

  28. 28

    Tyryshkin, A. M. et al. Dynamical decoupling in the presence of realistic pulse errors. Preprint at (2010)

  29. 29

    Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    ADS  CAS  Article  PubMed  Google Scholar 

  30. 30

    Hollenberg, L. C. L., Greentree, A. D., Fowler, A. G. & Wellard, C. J. Two-dimensional architectures for donor-based quantum computing. Phys. Rev. B 74, 045311 (2006)

    ADS  Article  Google Scholar 

Download references


We thank R. P. Starrett, D. Barber, C. Y. Yang and R. Szymanski for technical assistance. We also thank A. Laucht for the Bloch sphere artwork and D. Reilly for comments on the manuscript. This research was funded by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (project number CE11E0096) and the US Army Research Office (W911NF-08-1-0527). We acknowledge support from the Australian National Fabrication Facility.

Author information




K.Y.T. and W.H.L. fabricated the device; D.N.J. designed the phosphorus implantation experiments; J.J.P., K.Y.T., J.J.L.M. and J.P.D. performed the measurements; J.J.P., A.M., A.S.D. and J.J.L.M. designed the experiments and discussed the results; J.J.P. analysed the data; J.J.P. wrote the manuscript with input from all co-authors.

Corresponding authors

Correspondence to Jarryd J. Pla or Andrea Morello.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-5, Supplementary Figures 1-5 and Supplementary References. (PDF 490 kb)

Supplementary Movie 1

This movie illustrates the procedure employed to initialise, control and measure the electron spin qubit. The qubit is first initalised in the spin-down state by subjecting it to the electric fields produced by a surface gate. Following this, microwaves are generated to coherently rotate the electron spin. Finally, spin-to-charge conversion is performed to read the state of the qubit. (MOV 12683 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pla, J., Tan, K., Dehollain, J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing