Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

No surviving evolved companions of the progenitor of SN 1006


Type Ia supernovae are thought to occur when a white dwarf made of carbon and oxygen accretes sufficient mass to trigger a thermonuclear explosion1. The accretion could be slow, from an unevolved (main-sequence) or evolved (subgiant or giant) star2,3 (the single-degenerate channel), or rapid, as the primary star breaks up a smaller orbiting white dwarf3,4 (the double-degenerate channel). A companion star will survive the explosion only in the single-degenerate channel5. Both channels might contribute to the production of type Ia supernovae6,7, but the relative proportions of their contributions remain a fundamental puzzle in astronomy. Previous searches for remnant companions have revealed one possible case for SN 1572 (refs 8, 9), although that has been questioned10. More recently, observations have restricted surviving companions to be small, main-sequence stars11,12,13, ruling out giant companions but still allowing the single-degenerate channel. Here we report the results of a search for surviving companions of the progenitor of SN 1006 (ref. 14). None of the stars within 4 arc minutes of the apparent site of the explosion is associated with the supernova remnant, and we can firmly exclude all giant and subgiant stars from being companions of the progenitor. In combination with previous results, our findings indicate that fewer than 20 per cent of type Ia supernovae occur through the single-degenerate channel.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: R-band image of the SN 1006 field.
Figure 2: Observed UVES spectra of the candidate giant stars.
Figure 3: Stellar abundance ratios [X/Fe] of several Fe-peak elements.


  1. Nomoto, K., Saio, H., Kato, M. & Hachisu, I. Thermal stability of white dwarfs accreting hydrogen-rich matter and progenitors of type Ia supernovae. Astrophys. J. 663, 1269–1276 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Whelan, J. & Iben, I., Jr Binaries and supernovae of type 1. Astrophys. J. 186, 1007–1014 (1973)

    Article  ADS  CAS  Google Scholar 

  3. Branch, D., Livio, M., Yungelson, L. R., Boffi, F. & Baron, E. In search of the progenitors of type Ia supernovae. Publ. Astron. Soc. Pacif. 107, 1019–1029 (1995)

    Article  ADS  Google Scholar 

  4. Pakmor, R. et al. Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass 0.9 . Nature 463, 61–64 (2010)

    Article  ADS  CAS  Google Scholar 

  5. Ruiz-Lapuente, P. The quest for a supernova companion. Science 276, 1813–1814 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Greggio, L. The rates of Type Ia supernovae – II. Diversity of events at low and high redshifts. Mon. Not. R. Astron. Soc. 406, 22–42 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Brandt, T. D. et al. The ages of type Ia supernova progenitors. Astrophys. J. 140, 804–816 (2010)

    Google Scholar 

  8. Ruiz-Lapuente, P. et al. The binary progenitor of Tycho Brahe’s 1572 supernova. Nature 431, 1069–1072 (2004)

    Article  ADS  CAS  Google Scholar 

  9. González Hernández, J. I. et al. The chemical abundances of Tycho G in supernova remnant 1572. Astrophys. J. 691, 1–15 (2009)

    Article  ADS  Google Scholar 

  10. Kerzendorf, W. et al. Subaru high resolution spectroscopy of star G in the Tycho supernova remnant. Astrophys. J. 701, 1665–1672 (2009)

    Article  ADS  CAS  Google Scholar 

  11. Nugent, P. E. et al. Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star. Nature 480, 344–347 (2011)

    Article  ADS  CAS  Google Scholar 

  12. Li, W. et al. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature 480, 348–350 (2011)

    Article  ADS  CAS  Google Scholar 

  13. Edwards, Z. I., Pagnotta, A. & Schaefer, B. E. The progenitor of the type Ia supernova that created SNR 0519–69.0 in the Large Magellanic Cloud. Astrophys. J. 747, L19–L23 (2012)

    Article  ADS  Google Scholar 

  14. Stephenson, F. R. SN 1006: the brightest supernova. Astron. Geophys. 51, 5.27–5.32 (2010)

    Article  ADS  Google Scholar 

  15. Schaefer, B. E. & Pagnotta, A. An absence of ex-companion stars in the type Ia supernova remnant SNR 0509–67.5. Nature 481, 164–166 (2012)

    Article  ADS  CAS  Google Scholar 

  16. Sternberg, A. et al. Circumstellar material in type Ia supernovae via sodium absorption features. Science 333, 856–859 (2011)

    Article  ADS  CAS  Google Scholar 

  17. Kasen, D. Seeing the collision of a supernova with its companion star. Astrophys. J. 708, 1025–1031 (2010)

    Article  ADS  Google Scholar 

  18. Winkler, P. F., Gupta, G. & Long, K. S. The SN 1006 remnant: optical proper motions, deep imaging, distance, and brightness at maximum. Astrophys. J. 585, 324–335 (2003)

    Article  ADS  Google Scholar 

  19. Cutri, R. M. et al. 2MASS All-Sky Catalog of point sources. VizieR Online Data Catalog II/246 = II/246 (2003)

  20. Neves, V., Santos, N. C., Sousa, S. G., Correia, A. C. M. & Israelian, G. Chemical abundances of 451 stars from the HARPS GTO planet search program. Thin disk, thick disk, and planets. Astron. Astrophys. 497, 563–581 (2009)

    Article  ADS  CAS  Google Scholar 

  21. Pan, K.-C., Ricker, P. & Taam, R. Impact of type Ia supernova ejecta on the binary companions in the single-degenerate scenario. Astrophys. J. 750, 151 (2012)

    Article  ADS  Google Scholar 

  22. Marietta, E., Burrows, A. & Fryxell, B. Type Ia supernova explosions in binary systems: the impact on the secondary star and its consequences. Astrophys. J. 128 (suppl.). 615–650 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Pakmor, R., Röpke, F. K., Weiss, A. & Hillebrandt, W. The impact of type Ia supernovae on main sequence binary companions. Astron. Astrophys. 489, 943–951 (2008)

    Article  ADS  CAS  Google Scholar 

  24. Podsiadlowski, P. On the evolution and appearance of a surviving companion after a Type Ia supernova explosion. Preprint at (2003)

  25. Tabernero, H. M., Montes, D. & González Hernández, J. I. Chemically tagging the Hyades Supercluster: a homogeneous sample of F6-K4 kinematically selected northern stars. Astron. Astrophys.. (in the press); preprint at (2012)

  26. Sneden, C. Carbon and Nitrogen Abundances in Metal-Poor Stars. PhD thesis, Univ. Texas, Austin. (1973)

  27. Kurucz, R. L. ATLAS9 stellar atmospheres programs and 2 km s–1 grid. (Smithsonian Astrophysical Observatory, 1993)

  28. Monet, D. G. The 526,289,881 objects in the USNO–A2.0 catalogue. Bull. Am. Astron. Soc. 30, 1427 (1998)

    ADS  Google Scholar 

  29. Allen, G. E., Petre, R. & Gotthelf, E. V. X-ray synchrotron emission from 10–100 TeV cosmic ray electrons in the supernova remnant SN 1006. Astrophys. J. 558, 739–752 (2001)

    Article  ADS  Google Scholar 

  30. Winkler, P. F., Long, K. S., Hamilton, A. J. S. & Fesen, R. A. Probing multiple sight lines through the SN 1006 remnant by ultraviolet absorption spectroscopy. Astrophys. J. 624, 189–197 (2005)

    Article  ADS  CAS  Google Scholar 

Download references


This work was supported by the Spanish Ministerio de Ciencia e Innovación (MICINN), the Universidad Complutense de Madrid (UCM) and the Comunidad de Madrid, and is based on observations collected with the UVES spectrograph at the VLT/UT2 8.2-m Kueyen Telescope (ESO run ID, 69.D-0397(A)) at the Paranal Observatory, Chile. We are grateful to the Cerro Paranal Observatory staff and to the User Support Department of ESO for their help.

Author information

Authors and Affiliations



J.I.G.H. performed the chemical abundance analysis of the observed UVES spectra and determined the distances to the targets. J.I.G.H. and P.R.-L. wrote the paper. P.R.-L. was the Principal Investigator of the ESO proposal. R.C. and J.M. also participated in the ESO proposal. H.M.T. and D.M. derived the stellar parameters and created figures showing the observed spectra. R.C. and P.R.-L. contributed to the astrophysical interpretation of the results. J.M. and L.R.B. collected the photometric data and created figures showing the field and the supernova remnant. All the authors provided comments and contributed to the text of the final manuscript.

Corresponding authors

Correspondence to Jonay I. González Hernández or Pilar Ruiz-Lapuente.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-3, Supplementary Figures 1-3, Supplementary References and Supplementary Tables 1-4. (PDF 1413 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

González Hernández, J., Ruiz-Lapuente, P., Tabernero, H. et al. No surviving evolved companions of the progenitor of SN 1006. Nature 489, 533–536 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing