Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Response of salt-marsh carbon accumulation to climate change


About half of annual marine carbon burial takes place in shallow water ecosystems where geomorphic and ecological stability is driven by interactions between the flow of water, vegetation growth and sediment transport1. Although the sensitivity of terrestrial and deep marine carbon pools to climate change has been studied for decades, there is little understanding of how coastal carbon accumulation rates will change and potentially feed back on climate2,3. Here we develop a numerical model of salt marsh evolution, informed by recent measurements of productivity and decomposition, and demonstrate that competition between mineral sediment deposition and organic-matter accumulation determines the net impact of climate change on carbon accumulation in intertidal wetlands. We find that the direct impact of warming on soil carbon accumulation rates is more subtle than the impact of warming-driven sea level rise, although the impact of warming increases with increasing rates of sea level rise. Our simulations suggest that the net impact of climate change will be to increase carbon burial rates in the first half of the twenty-first century, but that carbon–climate feedbacks are likely to diminish over time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Response of organic-matter accumulation and vertical accretion rates to an instantaneous 4 °C change in temperature at year 0.
Figure 2: Impact of warming under constant sea-level-rise rates.
Figure 3: Impact of warming under accelerating sea-level-rise rates.

Similar content being viewed by others


  1. Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Mcleod, E. et al. A blueprint for blue carbon: towards an improved understanding of the role of vegetated coastal habitats in sequestering CO2 . Front. Ecol. Environ 9, 552–560 (2011)

    Article  Google Scholar 

  3. Chmura, G. L. What do we need to assess the sustainability of the tidal salt marsh carbon sink? Ocean Coast. Manage. 10.1016/j.ocecoaman.2011.09.006 (2011)

  4. Gedan, K. B., Silliman, B. R. & Bertness, M. D. Centuries of human-driven change in salt marsh ecosystems. Annu. Rev. Mar. Sci. 1, 117–141 (2009)

    Article  ADS  Google Scholar 

  5. Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011)

    Article  Google Scholar 

  6. Fagherazzi, S. et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev. Geophys. 50, RG1002 (2012)

    Article  ADS  Google Scholar 

  7. Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Responses of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002)

    Article  Google Scholar 

  8. Langley, J. A., McKee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc. Natl Acad. Sci. USA 106, 6182–6186 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Cherry, J. A., McKee, K. L. & Grace, J. B. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. J. Ecol. 97, 67–77 (2009)

    Article  Google Scholar 

  10. Kirwan, M. L., Guntenspergen, G. R. & Morris, J. T. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Glob. Change Biol. 15, 1982–1989 (2009)

    Article  ADS  Google Scholar 

  11. Charles, H. & Dukes, J. S. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh. Ecol. Appl. 19, 1758–1773 (2009)

    Article  PubMed  Google Scholar 

  12. Mudd, S. M., Howell, S. M. & Morris, J. T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuar. Coast. Shelf Sci. 82, 377–389 (2009)

    Article  ADS  CAS  Google Scholar 

  13. Kirwan, M. L. & Guntenspergen, G. R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J. Ecol. 100, 764–770 (2012)

    Article  Google Scholar 

  14. Elsey-Quirk, T., Seliskar, D. M., Sommerfield, C. K. & Gallagher, J. L. Salt marsh carbon pool distribution in a mid-Atlantic lagoon, USA: sea level rise implications. Wetlands 31, 87–99 (2011)

    Article  Google Scholar 

  15. Wolf, A. A., Drake, B. G., Erickson, J. E. & Megonigal, J. P. An oxygen-mediated positive feedback between elevated carbon dioxide and soil organic matter decomposition in a simulated anaerobic wetland. Glob. Change Biol. 13, 2036–2044 (2007)

    Article  ADS  Google Scholar 

  16. Kirwan, M. L. & Blum, L. K. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change. Biogeosciences 8, 987–993 (2011)

    Article  ADS  CAS  Google Scholar 

  17. Mudd, S. M., D’Alpaos, A. & Morris, J. T. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J. Geophys. Res. 115, F03029 (2010)

    ADS  Google Scholar 

  18. Craft, C. B., Seneca, E. D. & Broome, S. W. Loss on ignition and Kjeldahl digestion for estimating organic carbon and total nitrogen in estuarine marsh soils: calibration with dry combustion. Estuaries 14, 175–179 (1991)

    Article  CAS  Google Scholar 

  19. Bindoff, N. L. et al. in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 385–432 (Cambridge Univ. Press, 2007)

  20. Vermeer, M. & Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl Acad. Sci. USA 106, 21527–21532 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Baes, C. F., Goeller, H. E., Olson, J. S. & Rotty, R. M. Carbon dioxide and climate: The uncontrolled experiment. Am. Sci. 65, 310–320 (1977)

    ADS  Google Scholar 

  22. Riebesell, U., Kortzinger, A. & Oschlies, A. Sensitivities of marine carbon fluxes to ocean change. Proc. Natl Acad. Sci. USA 106, 20602–20609 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Shugart, H. H. & Woodward, F. I. Global Change and the Terrestrial Biosphere: Achievements and Challenges (Wiley-Blackwell, 2011)

    Google Scholar 

  24. Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: results from the (CMIP)-M-4 model intercomparison. J. Clim. 19, 3337–3353 (2006)

    Article  ADS  Google Scholar 

  25. Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, L23401 (2010)

    Article  ADS  Google Scholar 

  26. Gedan, K. B., Altieri, A. H. & Bertness, M. D. Uncertain future of New England salt marshes. Mar. Ecol. Prog. Ser. 434, 229–237 (2011)

    Article  ADS  Google Scholar 

  27. Idaszkin, Y. L. & Bortolus, A. Does low temperature prevent Spartina alterniflora from expanding toward the austral-most salt marshes? Plant Ecol. 212, 553–561 (2011)

    Article  Google Scholar 

  28. Nepf, H. M. Drag, turbulence, and diffusion in flow through emergent vegetation. Wat. Resour. Res. 35, 479–489 (1999)

    Article  ADS  Google Scholar 

  29. Tanino, Y. & Nepf, H. M. Laboratory investigation on mean drag in a random array of rigid, emergent cylinders. J. Hydraul. Eng. 134, 34–41 (2008)

    Article  Google Scholar 

  30. Powlson, D. S., Smith, P. & Smith, J. U., eds. Evaluation of Soil Organic Matter Models, using Existing Long-Term Datasets 237–246 (Springer, 1996)

  31. Baisden, W. T. et al. A multi-isotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence. Glob. Biogeochem. Cycles 16, 1135 (2002)

    ADS  Google Scholar 

  32. Choi, Y. & Wang, Y. Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements. Glob. Biogeochem. Cycles 18, GB4016 (2004)

    Article  ADS  Google Scholar 

Download references


We appreciate reviews by S. Bridgham and L. Larsen. This work was supported by the USGS Global Change Research Program.

Author information

Authors and Affiliations



Both M.L.K. and S.M.M. designed the experiments, interpreted their results, and wrote the paper.

Corresponding author

Correspondence to Matthew L. Kirwan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-3 and additional references. (PDF 589 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirwan, M., Mudd, S. Response of salt-marsh carbon accumulation to climate change. Nature 489, 550–553 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing