Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The aged niche disrupts muscle stem cell quiescence


The niche is a conserved regulator of stem cell quiescence and function. During ageing, stem cell function declines. To what extent and by what means age-related changes within the niche contribute to this phenomenon are unknown. Here we demonstrate that the aged muscle stem cell niche, the muscle fibre, expresses Fgf2 under homeostatic conditions, driving a subset of satellite cells to break quiescence and lose their self-renewing capacity. We show in mice that relatively dormant aged satellite cells robustly express sprouty 1 (Spry1), an inhibitor of fibroblast growth factor (FGF) signalling. Increasing FGF signalling in aged satellite cells under homeostatic conditions by removing Spry1 results in the loss of quiescence, satellite cell depletion and diminished regenerative capacity. Conversely, reducing niche-derived FGF activity through inhibition of Fgfr1 signalling or overexpression of Spry1 in satellite cells prevents their depletion. These experiments identify an age-dependent change in the stem cell niche that directly influences stem cell quiescence and function.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Aged satellite cells cycle more frequently during homeostasis.
Figure 2: Preservation of quiescence protects satellite cell function.
Figure 3: Fgf2 is an aged-niche-derived factor that induces satellite cells to cycle.
Figure 4: Aged satellite cells are sensitive to acute changes in FGF signalling.
Figure 5: Longer-term changes in FGF signalling drive satellite cell depletion.


  1. 1

    Sambasivan, R. et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138, 3647–3656 (2011)

    CAS  Article  Google Scholar 

  2. 2

    Collins, C. A. et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289–301 (2005)

    CAS  Article  Google Scholar 

  3. 3

    Lepper, C., Partridge, T. A. & Fan, C. M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138, 3639–3646 (2011)

    CAS  Article  Google Scholar 

  4. 4

    Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S. & Blau, H. M. Self-renewal and expansion of single transplanted muscle stem cells. Nature 456, 502–506 (2008)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Murphy, M. M., Lawson, J. A., Mathew, S. J., Hutcheson, D. A. & Kardon, G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138, 3625–3637 (2011)

    CAS  Article  Google Scholar 

  6. 6

    Shea, K. L. et al. Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 6, 117–129 (2010)

    CAS  Article  Google Scholar 

  7. 7

    Shavlakadze, T., McGeachie, J. & Grounds, M. D. Delayed but excellent myogenic stem cell response of regenerating geriatric skeletal muscles in mice. Biogerontology 11, 363–376 (2010)

    Article  Google Scholar 

  8. 8

    Carlson, B. M. & Faulkner, J. A. Muscle transplantation between young and old rats: age of host determines recovery. Am. J. Physiol. 256, C1262–C1266 (1989)

    CAS  Article  Google Scholar 

  9. 9

    Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Collins, C. A., Zammit, P. S., Ruiz, A. P., Morgan, J. E. & Partridge, T. A. A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25, 885–894 (2007)

    CAS  Article  Google Scholar 

  11. 11

    Conboy, I. M., Conboy, M. J., Smythe, G. M. & Rando, T. A. Notch-mediated restoration of regenerative potential to aged muscle. Science 302, 1575–1577 (2003)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Shefer, G., Van de Mark, D. P., Richardson, J. B. & Yablonka-Reuveni, Z. Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev. Biol. 294, 50–66 (2006)

    CAS  Article  Google Scholar 

  14. 14

    Brack, A. S., Bildsoe, H. & Hughes, S. M. Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J. Cell Sci. 118, 4813–4821 (2005)

    CAS  Article  Google Scholar 

  15. 15

    Carlson, M. E., Hsu, M. & Conboy, I. M. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454, 528–532 (2008)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Pan, L. et al. Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 1, 458–469 (2007)

    CAS  Article  Google Scholar 

  17. 17

    Boyle, M., Wong, C., Rocha, M. & Jones, D. L. Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 1, 470–478 (2007)

    CAS  Article  Google Scholar 

  18. 18

    Voog, J. & Jones, D. L. Stem cells and the niche: a dynamic duo. Cell Stem Cell 6, 103–115 (2010)

    CAS  Article  Google Scholar 

  19. 19

    Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008)

    CAS  Article  Google Scholar 

  20. 20

    Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495 (1961)

    CAS  Article  Google Scholar 

  21. 21

    Bischoff, R. Interaction between satellite cells and skeletal muscle fibers. Development 109, 943–952 (1990)

    CAS  PubMed  Google Scholar 

  22. 22

    Orford, K. W. & Scadden, D. T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nature Rev. Genet. 9, 115–128 (2008)

    CAS  Article  Google Scholar 

  23. 23

    Foudi, A. et al. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nature Biotechnol. 27, 84–90 (2009)

    CAS  Article  Google Scholar 

  24. 24

    Zammit, P. S. et al. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J. Cell Biol. 166, 347–357 (2004)

    CAS  Article  Google Scholar 

  25. 25

    Olguin, H. C. & Olwin, B. B. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev. Biol. 275, 375–388 (2004)

    CAS  Article  Google Scholar 

  26. 26

    Rocheteau, P., Gayraud-Morel, B., Siegl-Cachedenier, I., Blasco, M. A. & Tajbakhsh, S. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 148, 112–125 (2012)

    CAS  Article  Google Scholar 

  27. 27

    Yablonka-Reuveni, Z. & Rivera, A. J. Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers. Dev. Biol. 164, 588–603 (1994)

    CAS  Article  Google Scholar 

  28. 28

    Sheehan, S. M. & Allen, R. E. Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor. J. Cell. Physiol. 181, 499–506 (1999)

    CAS  Article  Google Scholar 

  29. 29

    Bischoff, R. A satellite cell mitogen from crushed adult muscle. Dev. Biol. 115, 140–147 (1986)

    CAS  Article  Google Scholar 

  30. 30

    Yoshida, N., Yoshida, S., Koishi, K., Masuda, K. & Nabeshima, Y. Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates ‘reserve cells’. J. Cell Sci. 111, 769–779 (1998)

    CAS  PubMed  Google Scholar 

  31. 31

    Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y. & Krasnow, M. A. sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92, 253–263 (1998)

    CAS  Article  Google Scholar 

  32. 32

    Kim, H. J. & Bar-Sagi, D. Modulation of signalling by Sprouty: a developing story. Nature Rev. Mol. Cell Biol. 5, 441–450 (2004)

    CAS  Article  Google Scholar 

  33. 33

    Gross, I., Bassit, B., Benezra, M. & Licht, J. D. Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J. Biol. Chem. 276, 46460–46468 (2001)

    CAS  Article  Google Scholar 

  34. 34

    Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Yang, X. et al. Overexpression of Spry1 in chondrocytes causes attenuated FGFR ubiquitination and sustained ERK activation resulting in chondrodysplasia. Dev. Biol. 321, 64–76 (2008)

    CAS  Article  Google Scholar 

  36. 36

    Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008)

    CAS  Article  Google Scholar 

  37. 37

    Floss, T., Arnold, H. H. & Braun, T. A role for FGF-6 in skeletal muscle regeneration. Genes Dev. 11, 2040–2051 (1997)

    CAS  Article  Google Scholar 

  38. 38

    Lefaucheur, J. P. & Sebille, A. Muscle regeneration following injury can be modified in vivo by immune neutralization of basic fibroblast growth factor, transforming growth factor beta 1 or insulin-like growth factor I. J. Neuroimmunol. 57, 85–91 (1995)

    CAS  Article  Google Scholar 

  39. 39

    Conboy, I. M. & Rando, T. A. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell 3, 397–409 (2002)

    CAS  Article  Google Scholar 

  40. 40

    Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A. & Weissman, I. L. The aging of hematopoietic stem cells. Nature Med. 2, 1011–1016 (1996)

    CAS  Article  Google Scholar 

  41. 41

    Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000)

    CAS  Article  Google Scholar 

  42. 42

    Ono, Y. et al. Slow-dividing satellite cells retain long-term self-renewal ability in adult muscle. J. Cell Sci. 125, 1309–1319 (2012)

    CAS  Article  Google Scholar 

  43. 43

    Kuang, S., Kuroda, K., Le Grand, F. & Rudnicki, M. A. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129, 999–1010 (2007)

    CAS  Article  Google Scholar 

  44. 44

    Bjornson, C. R. et al. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30, 232–242 (2012)

    CAS  Article  Google Scholar 

  45. 45

    Cheung, T. H. et al. Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482, 524–528 (2012)

    ADS  CAS  Article  Google Scholar 

  46. 46

    Mourikis, P. et al. A critical requirement for Notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 30, 243–252 (2011)

    Article  Google Scholar 

  47. 47

    Lagha, M. et al. Pax3 regulation of FGF signaling affects the progression of embryonic progenitor cells into the myogenic program. Genes Dev. 22, 1828–1837 (2008)

    CAS  Article  Google Scholar 

  48. 48

    Groves, J. A., Hammond, C. L. & Hughes, S. M. Fgf8 drives myogenic progression of a novel lateral fast muscle fibre population in zebrafish. Development 132, 4211–4222 (2005)

    CAS  Article  Google Scholar 

  49. 49

    Flanagan-Steet, H., Hannon, K., McAvoy, M. J., Hullinger, R. & Olwin, B. B. Loss of FGF receptor 1 signaling reduces skeletal muscle mass and disrupts myofiber organization in the developing limb. Dev. Biol. 218, 21–37 (2000)

    CAS  Article  Google Scholar 

  50. 50

    Kudla, A. J. et al. The FGF receptor-1 tyrosine kinase domain regulates myogenesis but is not sufficient to stimulate proliferation. J. Cell Biol. 142, 241–250 (1998)

    CAS  Article  Google Scholar 

  51. 51

    Basson, M. A. et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev. Cell 8, 229–239 (2005)

    CAS  Article  Google Scholar 

  52. 52

    Xu, X., Qiao, W., Li, C. & Deng, C. X. Generation of Fgfr1 conditional knockout mice. Genesis 32, 85–86 (2002)

    Article  Google Scholar 

  53. 53

    Nishijo, K. et al. Biomarker system for studying muscle, stem cells, and cancer in vivo. FASEB J. 23, 2681–2690 (2009)

    CAS  Article  Google Scholar 

  54. 54

    Buono, M., Visigalli, I., Bergamasco, R., Biffi, A. & Cosma, M. P. Sulfatase modifying factor 1-mediated fibroblast growth factor signaling primes hematopoietic multilineage development. J. Exp. Med. 207, 1647–1660 (2010)

    CAS  Article  Google Scholar 

  55. 55

    Umemori, H., Linhoff, M. W., Ornitz, D. M. & Sanes, J. R. FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118, 257–270 (2004)

    CAS  Article  Google Scholar 

Download references


We thank H. Hock, K. Hochedlinger and R. Friesel for the generous provision of reagents, and G. Estrada for technical assistance. We are also grateful to L. Prickett-Rice, K. Folz-Donahue and M. Weglarz for cell sorting. This work was supported by MGH start-up funds, Harvard Stem Cell Institute grants and NIH grants (R01 AR060868, R01 AR061002) (A.S.B.); a Wellcome Trust grant (WT091475) (M.A.B.); and an MGH ECOR Postdoctoral Fellow Award (J.V.C.) and a BBSRC Doctoral Training Award (BB/F017626/1) (K.M.J.).

Author information




J.V.C. designed and performed experiments, analysed data, interpreted results and wrote the manuscript. K.M.J. performed experiments, analysed data and edited the manuscript. M.A.B. conceived the project, designed experiments, interpreted results, and edited the manuscript. A.S.B. conceived the project, designed experiments, interpreted results, and wrote the manuscript.

Corresponding author

Correspondence to Andrew S. Brack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-11. (PDF 13124 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chakkalakal, J., Jones, K., Basson, M. et al. The aged niche disrupts muscle stem cell quiescence. Nature 490, 355–360 (2012).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links