Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour

Abstract

Animals locate and track chemoattractive gradients in the environment to find food. With its small nervous system, Caenorhabditis elegans is a good model system1,2 in which to understand how the dynamics of neural activity control this search behaviour. Extensive work on the nematode has identified the neurons that are necessary for the different locomotory behaviours underlying chemotaxis through the use of laser ablation3,4,5,6,7, activity recording in immobilized animals and the study of mutants4,5. However, we do not know the neural activity patterns in C. elegans that are sufficient to control its complex chemotactic behaviour. To understand how the activity in its interneurons coordinate different motor programs to lead the animal to food, here we used optogenetics and new optical tools to manipulate neural activity directly in freely moving animals to evoke chemotactic behaviour. By deducing the classes of activity patterns triggered during chemotaxis and exciting individual neurons with these patterns, we identified interneurons that control the essential locomotory programs for this behaviour. Notably, we discovered that controlling the dynamics of activity in just one interneuron pair (AIY) was sufficient to force the animal to locate, turn towards and track virtual light gradients. Two distinct activity patterns triggered in AIY as the animal moved through the gradient controlled reversals and gradual turns to drive chemotactic behaviour. Because AIY neurons are post-synaptic to most chemosensory and thermosensory neurons8, it is probable that these activity patterns in AIY have an important role in controlling and coordinating different taxis behaviours of the animal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Asymmetric component of the odour signal controls gradual turning.
Figure 2: Asymmetric and symmetric excitation of AIY control gradual turning and reversal frequency.
Figure 3: Asymmetric AIY excitation modulates the head-bending angle to cause turning.
Figure 4: Controlling AIY activity is sufficient to evoke chemotactic behaviour.

Similar content being viewed by others

References

  1. Brenner, S. The genetics of behaviour. Br. Med. Bull. 29, 269–271 (1973)

    Article  CAS  PubMed  Google Scholar 

  2. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tsalik, E. L. & Hobert, O. Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J. Neurobiol. 56, 178–197 (2003)

    Article  PubMed  Google Scholar 

  4. Iino, Y. & Yoshida, K. Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans. J. Neurosci. 29, 5370–5380 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pierce-Shimomura, J. T., Morse, T. M. & Lockery, S. R. The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. J. Neurosci. 19, 9557–9569 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wakabayashi, T., Kitagawa, I. & Shingai, R. Neurons regulating the duration of forward locomotion in Caenorhabditis elegans. Neurosci. Res. 50, 103–111 (2004)

    Article  PubMed  Google Scholar 

  7. Gray, J. M., Hill, J. J. & Bargmann, C. I. A circuit for navigation in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 102, 3184–3191 (2005)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  8. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986)

    Article  CAS  ADS  Google Scholar 

  9. Ward, S. Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc. Natl Acad. Sci. USA 70, 817–821 (1973)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  10. Izquierdo, E. J. & Lockery, S. R. Evolution and analysis of minimal neural circuits for klinotaxis in Caenorhabditis elegans. J. Neurosci. 30, 12908–12917 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chalasani, S. H. et al. Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450, 63–70 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  12. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 8, 1263–1268 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Nagel, G. et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  14. Chow, B. Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  15. Okazaki, A., Sudo, Y. & Takagi, S. Optical silencing of C. elegans cells with arch proton pump. PLoS ONE 7, e35370 (2012)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  16. Guo, Z. V., Hart, A. C. & Ramanathan, S. Optical interrogation of neural circuits in Caenorhabditis elegans. Nature Methods 6, 891–896 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leifer, A. M., Fang-Yen, C., Gershow, M., Alkema, M. J. & Samuel, A. D. T. Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nature Methods 8, 147–152 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stirman, J. N. et al. Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans. Nature Methods 8, 153–158 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lockery, S. R. The computational worm: spatial orientation and its neuronal basis in C. elegans. Curr. Opin. Neurobiol. 21, 782–790 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, D., Park, S., Mahadevan, L. & Shin, J. H. The shallow turn of a worm. J. Exp. Biol. 214, 1554–1559 (2011)

    Article  PubMed  Google Scholar 

  21. McIntire, S. L., Jorgensen, E., Kaplan, J. & Horvitz, H. R. The GABAergic nervous system of Caenorhabditis elegans. Nature 364, 337–341 (1993)

    Article  CAS  ADS  PubMed  Google Scholar 

  22. Granato, M., Schnabel, H. & Schnabel, R. pha-1, a selectable marker for gene transfer in C. elegans. Nucleic Acids Res. 22, 1762–1763 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Edwards, S. L. et al. A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol. 6, e198 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Karasawa, S., Araki, T., Nagai, T., Mizuno, H. & Miyawaki, A. Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem. J. 381, 307–312 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ramot D, Johnson B. E, Berry T. L. Jr, Carnell L & Goodman M. B The parallel worm tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS ONE 3, e2208 (2008)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Merzlyak, E. M. et al. Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nature Methods 4, 555–557 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. Hires, S. A., Tian, L. & Looger, L. L. Reporting neural activity with genetically encoded calcium indicators. Brain Cell Biol. 36, 69–86 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Troemel, E. R., Sagasti, A. & Bargmann, C. I. Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans. Cell 99, 387–398 (1999)

    Article  CAS  PubMed  Google Scholar 

  29. Hobert, O. et al. Regulation of interneuron function in the C. elegans thermoregulatory pathway by the ttx-3 LIM homeobox gene. Neuron 19, 345–357 (1997)

    Article  CAS  PubMed  Google Scholar 

  30. Bendena, W. G. et al. A Caenorhabditis elegans allatostatin/galanin-like receptor NPR-9 inhibits local search behavior in response to feeding cues. Proc. Natl Acad. Sci. USA. 105, 1339–1342 (2008)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  31. Tsalik, E. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev. Biol. 263, 81–102 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chou, J. H., Bargmann, C. I. & Sengupta, P. The Caenorhabditis elegans odr-2 gene encodes a novel Ly-6-related protein required for olfaction. Genetics 157, 211–224 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Boulin, T., Etchberger, J. F. & Hobert, O. Reporter gene fusions. WormBook (2006)

Download references

Acknowledgements

We thank J. Dowling, S. Lockery, J. Lichtman, K. McCormick, A. Murray, E. O’Shea, A. Schier, B. Stern and members of the Ramanathan laboratory for discussions and comments, the Human Frontier Science Program (HFSP) Postdoctoral Fellowship (A.K.), National Science Foundation (NSF) Graduate Fellowship (C.-H.S.), NSF Career Award, Pew Scholar, Klingenstein Fellowship Award and the National Institutes of Health (NIH) Pioneer Awards (S.R.) for support.

Author information

Authors and Affiliations

Authors

Contributions

A.K., C.-H.S., Z.V.G. and S.R. designed the experiments. A.K., C.-H.S. and Z.V.G. performed the experiments. A.K., C.-H.S. and S.R. wrote the manuscript.

Corresponding authors

Correspondence to Askin Kocabas or Sharad Ramanathan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Materials and Methods, Supplementary Tables 1-2, legends for Supplementary Movies 1-11 (see separate zipped file), Supplementary References and Supplementary Figures 1-7. (PDF 2131 kb)

Supplementary Movies

This file contains Supplementary Movies 1-11 (see Supplementary Information file for legends. (ZIP 11733 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocabas, A., Shen, CH., Guo, Z. et al. Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour. Nature 490, 273–277 (2012). https://doi.org/10.1038/nature11431

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11431

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing