Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A FOXO3–IRF7 gene regulatory circuit limits inflammatory sequelae of antiviral responses


Antiviral responses must be tightly regulated to defend rapidly against infection while minimizing inflammatory damage. Type 1 interferons (IFN-I) are crucial mediators of antiviral responses1 and their transcription is regulated by a variety of transcription factors2; principal among these is the family of interferon regulatory factors (IRFs)3. The IRF gene regulatory networks are complex and contain multiple feedback loops. The tools of systems biology are well suited to elucidate the complex interactions that give rise to precise coordination of the interferon response. Here we have used an unbiased systems approach to predict that a member of the forkhead family of transcription factors, FOXO3, is a negative regulator of a subset of antiviral genes. This prediction was validated using macrophages isolated from Foxo3-null mice. Genome-wide location analysis combined with gene deletion studies identified the Irf7 gene as a critical target of FOXO3. FOXO3 was identified as a negative regulator of Irf7 transcription and we have further demonstrated that FOXO3, IRF7 and IFN-I form a coherent feed-forward regulatory circuit. Our data suggest that the FOXO3–IRF7 regulatory circuit represents a novel mechanism for establishing the requisite set points in the interferon pathway that balances the beneficial effects and deleterious sequelae of the antiviral response.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: FOXO3 is a negative regulator of the antiviral response.
Figure 2: FOXO3 keeps the Irf7 gene in check.
Figure 3: IFN-β represses FOXO3.
Figure 4: Antiviral responses lead to increased lung injury in the absence of FOXO3 and IRF7.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Microarray and ChIP–Seq raw data have been submitted to the Gene Expression Omnibus under accession number GSE37052.


  1. 1

    Liu, S. Y., Sanchez, D. J. & Cheng, G. New developments in the induction and antiviral effectors of type I interferon. Curr. Opin. Immunol. 23, 57–64 (2011)

    Article  Google Scholar 

  2. 2

    Panne, D., Maniatis, T. & Harrison, S. C. An atomic model of the interferon-beta enhanceosome. Cell 129, 1111–1123 (2007)

    CAS  Article  Google Scholar 

  3. 3

    Tamura, T., Yanai, H., Savitsky, D. & Taniguchi, T. The IRF family transcription factors in immunity and oncogenesis. Annu. Rev. Immunol. 26, 535–584 (2008)

    CAS  Article  Google Scholar 

  4. 4

    Barbalat, R., Ewald, S. E., Mouchess, M. L. & Barton, G. M. Nucleic acid recognition by the innate immune system. Annu. Rev. Immunol. 29, 185–214 (2011)

    CAS  Article  Google Scholar 

  5. 5

    Benayoun, B. A., Caburet, S. & Veitia, R. A. Forkhead transcription factors: key players in health and disease. Trends Genet. 27, 224–232 (2011)

    CAS  Article  Google Scholar 

  6. 6

    Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Shahbazian, M. D. & Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 76, 75–100 (2007)

    CAS  Article  Google Scholar 

  9. 9

    Szklarczyk, D. et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–D568 (2011)

    CAS  Article  Google Scholar 

  10. 10

    Khan, N. et al. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J. 409, 581–589 (2008)

    CAS  Article  Google Scholar 

  11. 11

    Ning, S., Huye, L. E. & Pagano, J. S. Regulation of the transcriptional activity of the IRF7 promoter by a pathway independent of interferon signaling. J. Biol. Chem. 280, 12262–12270 (2005)

    CAS  Article  Google Scholar 

  12. 12

    Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999)

    CAS  Article  Google Scholar 

  13. 13

    Plas, D. R. & Thompson, C. B. Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J. Biol. Chem. 278, 12361–12366 (2003)

    CAS  Article  Google Scholar 

  14. 14

    Dejean, A. S. et al. Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nature Immunol. 10, 504–513 (2009)

    CAS  Article  Google Scholar 

  15. 15

    Fallarino, F. et al. CTLA-4–Ig activates Forkhead transcription factors and protects dendritic cells from oxidative stress in nonobese diabetic mice. J. Exp. Med. 200, 1051–1062 (2004)

    CAS  Article  Google Scholar 

  16. 16

    Wang, S. T. et al. RNA interference-mediated silencing of Foxo3 in antigen-presenting cells as a strategy for the enhancement of DNA vaccine potency. Gene Ther. 18, 372–383 (2011)

    ADS  Article  Google Scholar 

  17. 17

    Ning, S., Pagano, J. S. & Barber, G. N. IRF7: activation, regulation, modification and function. Genes Immun. 10.1038/gene.2011.21.

  18. 18

    Kumagai, Y. et al. Alveolar macrophages are the primary interferon-α producer in pulmonary infection with RNA viruses. Immunity 27, 240–252 (2007)

    CAS  Article  Google Scholar 

  19. 19

    Lyles, D. S. & Rupprecht, C. E. in Fields Virology 5th edn, Vol. 1 (eds Howley, P. M. & Knipe, D. M. ) 1363–1408 (2007)

  20. 20

    Sullivan, J. A., Kim, E. H., Plisch, E. H., Peng, S. L. & Suresh, M. FOXO3 regulates CD8 T cell memory by T cell-intrinsic mechanisms. PLoS Pathog. 8, e1002533 (2012)

    CAS  Article  Google Scholar 

  21. 21

    Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Müller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921 (1994)

    ADS  Article  Google Scholar 

  23. 23

    Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Castrillon, D. H., Miao, L., Kollipara, R., Horner, J. W. & DePinho, R. A. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301, 215–218 (2003)

    CAS  ADS  Article  Google Scholar 

  25. 25

    Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003)

    Article  Google Scholar 

  26. 26

    Gentleman, R. C. e. t. a. l. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, research80 (2004)

  27. 27

    Parkinson, H. et al. ArrayExpress–a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 35, D747–D750 (2007)

    CAS  Article  Google Scholar 

  28. 28

    Chiang, D. Y., Brown, P. O. & Eisen, M. B. Visualizing associations between genome sequences and gene expression data using genome-mean expression profiles. Bioinformatics 17, S49–S55 (2001)

    Article  Google Scholar 

  29. 29

    Dollar, P. Piotr Dollar’s Image and Video Toolbox for Matlab (University of California, San Diego, 2006)

  30. 30

    Ramsey, S. A. et al. Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLOS Comput. Biol. 4, e1000021 (2008)

    MathSciNet  Article  Google Scholar 

  31. 31

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005)

    CAS  ADS  Article  Google Scholar 

  32. 32

    Gilchrist, M., McCauley, S. D. & Befus, A. D. Expression, localization, and regulation of NOS in human mast cell lines: effects on leukotriene production. Blood 104, 462–469 (2004)

    CAS  Article  Google Scholar 

  33. 33

    Thijs, G. et al. INCLUSive: integrated clustering, upstream sequence retrieval and motif sampling. Bioinformatics 18, 331–332 (2002)

    CAS  Article  Google Scholar 

  34. 34

    Biobase. TRANSFAC Professional v9. 3 (

  35. 35

    Ramsey, S. A. et al. Genome-wide histone acetylation data improve prediction of mammalian transcription factor binding sites. Bioinformatics 26, 2071–2075 (2010)

    CAS  Article  Google Scholar 

  36. 36

    Renault, V. M. et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5, 527–539 (2009)

    CAS  Article  Google Scholar 

  37. 37

    McLaren, L. C., Holland, J. J. & Syverton, J. T. The mammalian cell–virus relationship. I. Attachment of poliovirus to cultivated cells of primate and non-primate origin. J. Exp. Med. 109, 475–485 (1959)

    CAS  Article  Google Scholar 

  38. 38

    Smith, K. D. et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nature Immunol. 4, 1247–1253 (2003)

    CAS  Article  Google Scholar 

Download references


We thank K. A. Kennedy and J. J. Peschon for discussions and critical reading of the manuscript; and S. A. Danziger, T. Stolyar and E. van Gaver for technical assistance. This work was supported by grants and contracts from the National Institutes of Health (R01AI025032, R01AI032972, HHSN272200700038C, HHSN272200800058C and U54GM103511).

Author information




V.L. designed experiments, carried out all experimental studies and drafted the manuscript; A.V.R. performed data mining and microarray data analysis; A.E.L. provided technical assistance for experiments, including quantitative real-time PCR, ChIP and in vivo studies; F.S. carried out western blots; A.C.H. and A.R. performed ChIP-Seq data analysis; A.G.R. did genome-wide motif scanning analysis; A.B. did in vivo studies; J.D.A. supervised the computational analysis and A.A. supervised the study and wrote the manuscript.

Corresponding author

Correspondence to Alan Aderem.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-14 and full Legends for Supplementary Tables 1-10. (PDF 1139 kb)

Supplementary Data

This file contains Supplementary Tables 1-5 (see Supplementary Information file for full Supplementary Table Legends). (XLS 398 kb)

Supplementary Data

This file contains Supplementary Tables 6-10 (see Supplementary Information file for full Supplementary Table Legends). (XLS 508 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Litvak, V., Ratushny, A., Lampano, A. et al. A FOXO3–IRF7 gene regulatory circuit limits inflammatory sequelae of antiviral responses. Nature 490, 421–425 (2012).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing