Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

Abstract

In 1756, Leidenfrost1 observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling2. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants3. The presence of these vapour films can also reduce liquid–solid drag4,5,6. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling—by heat transfer—the liquid–gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation7,8,9, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating10.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Surface topography and images of the superhydrophobic sphere.
Figure 2: High-speed camera snapshots of 20-mm steel spheres cooling in water.
Figure 3: Sphere temperature versus cooling time for 20-mm steel spheres held in water at 22 °C.
Figure 4: Surface temperature versus heat flux in heating experiments.

References

  1. 1

    Leidenfrost, J. G. De aquae communis nonnullis qualitatibus tractatus (Duisburg, 1756); transl. Wares, C. On the fixation of water in diverse fire. Int. J. Heat Mass Transfer 9, 1153–1166 (1966)

    CAS  Article  Google Scholar 

  2. 2

    Bernardin, J. D. & Mudawar, I. The Leidenfrost point: experimental study and assessment of existing models. Trans. Am. Soc. Mech. Eng. 121, 894–903 (1999)

    Google Scholar 

  3. 3

    Berthoud, G. Vapor explosions. Annu. Rev. Fluid Mech. 32, 573–611 (2000)

    ADS  Article  Google Scholar 

  4. 4

    Linke, H. et al. Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96, 154502 (2006)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Lagubeau, N., Le Merrer, M., Clanet, C. & Quéré, D. Leidenfrost on a ratchet. Nature Phys. 7, 395–398 (2011)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Vakarelski, I. U., Marston, J. O., Chan, D. Y. C. & Thoroddsen, S. T. Drag reduction by Leidenfrost vapor layers. Phys. Rev. Lett. 106, 214501 (2011)

    ADS  Article  Google Scholar 

  7. 7

    Mishchenko, L. et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4, 7699–7707 (2010)

    CAS  Article  Google Scholar 

  8. 8

    Wong, T. S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Deng, X. Mammen, L. Butt, H. J. & Vollmer, D. Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67–70 (2012)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Patankar, N. A. Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer. Soft Matter 6, 1613–1620 (2010)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  11. 11

    Wang, C. H. & Dhir, V. K. Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. J. Heat Transfer 115, 659–669 (1993)

    CAS  Article  Google Scholar 

  12. 12

    Takata, Y., Hidaka, S. & Kohno, M. in Proc. Fifth Intl Conf. Enhanced, Compact and Ultra-compact Heat Exchangers: Science, Engineering and Technology (eds Shah, R. K. et al.) 300–304 (Engineering Conferences International, 2005)

    Google Scholar 

  13. 13

    Chen, R. et al. Nanowires for enhanced boiling heat transfer. Nano Lett. 9, 548–553 (2009)

    ADS  Article  Google Scholar 

  14. 14

    Liu, G. & Craig, V. S. J. Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature. Faraday Discuss. 146, 141–151 (2010)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Liu, G., Fu, L., Rode, A. V. & Craig, V. S. J. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition. Langmuir 27, 2595–2600 (2011)

    CAS  Article  Google Scholar 

  16. 16

    Kim, H., Truong, B., Buongiomo, J. & Hu, L. On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena. Appl. Phys. Lett. 98, 083121 (2011)

    ADS  Article  Google Scholar 

  17. 17

    Zvirin, Y., Hewitt, G. R. & Kenning, D. B. R. Boiling on free-falling spheres: drag and heat transfer coefficients. Exp. Heat Transf. 3, 185–214 (1990)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Rothstein, J. P. Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89–109 (2010)

    ADS  Article  Google Scholar 

  19. 19

    Ceccio, S. L. Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42, 183–203 (2010)

    ADS  Article  Google Scholar 

  20. 20

    McHale, G., Newton, M. I. & Shirtcliffe, N. J. Immersed superhydrophobic surfaces: gas exchange, slip and drag reduction properties. Soft Matter 6, 714–719 (2010)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Cassie, A. B. D. & Baxter, S. Wettability of porous surfaces. Trans . Faraday Soc. 40, 0546–0550 (1944)

    CAS  Article  Google Scholar 

  22. 22

    Patankar, N. A. On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19, 1249–1253 (2003)

    CAS  Article  Google Scholar 

  23. 23

    Larmour, I. A., Bell, S. E. J. & Saunders, G. S. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angew. Chem. Int. Edn Engl 46, 1710–1712 (2007)

    CAS  Article  Google Scholar 

  24. 24

    Quéré, D. Wetting and roughness. Annu. Rev. Mater. Res. 38, 71–99 (2008)

    ADS  Article  Google Scholar 

  25. 25

    Flynn, M. R. & Bush, J. W. M. Underwater breathing: the mechanics of plastron respiration. J. Fluid Mech. 608, 275–296 (2008)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  26. 26

    Lee, C. & Kim, C.-J. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. Phys. Rev. Lett. 106, 014502 (2011)

    ADS  Article  Google Scholar 

  27. 27

    Dhir, V. K. & Purohit, G. P. Subcooled film boiling heat transfer from spheres. Nucl. Eng. Des. 47, 49–66 (1978)

    CAS  Article  Google Scholar 

  28. 28

    Nukiyama, S. Maximum and minimum values of heat Q transmitted from metal to boiling water under atmospheric pressure. J. Jpn Soc. Mech. Engrs 37, 367–374 (1934)

    Google Scholar 

  29. 29

    Witte, L. C. & Lienhard, J. H. On the existence of two “transition” boiling cure. Int. J. Heat Mass Transf. 25, 771–779 (1982)

    CAS  Article  Google Scholar 

  30. 30

    Celestini, F. & Kirstetter, G. Effect of an electric field on a Leidenfrost droplet. Soft Matter 8, 5992–5995 (2012)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Baumeister, K. J., Hendricks, R. C. & Hamill, T. D. Metastable Leidenfrost States (NASA Technical Note D3226, 1966)

  32. 32

    Carey, V. P. in Liquid-Vapor Phase-Change Phenomena 2nd edn 353–356 (Taylor and Francis, 2008)

Download references

Acknowledgements

We acknowledge the KAUST Machine Workshop, KAUST Electronics Workshop and G. D. Li for assistance in setting up the cooling and heating experiments, and L. Chen and B. Chew from KAUST Advanced Nanofabrication, Imaging and Characterization Core Lab facilities for assistance in AFM and SEM imaging characterization of the superhydrophobic coating.

Author information

Affiliations

Authors

Contributions

I.U.V. conceived research and designed the experiments. I.U.V. and J.O.M. carried out the experiments. N.A.P., D.Y.C.C. and S.T.T. contributed with discussions, analysis and theoretical interpretation of the experimental results. I.U.V., D.Y.C.C. and N.A.P. wrote the manuscript. All authors edited the manuscript.

Corresponding authors

Correspondence to Ivan U. Vakarelski or Neelesh A. Patankar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary references, Supplementary Figures 1-19 and full legends for Supplementary Movies 1-5. (PDF 3892 kb)

Cooling of a hydrophilic sphere

Cooling of a 20mm diameter hydrophilic sphere in 22°C water. (MOV 7312 kb)

Cooling of a hydrophobic sphere

Cooling of a 20mm diameter hydrophobic surface steel sphere in 22°C water. (MOV 2777 kb)

Cooling of a superhydrophobic sphere

Cooling of a 20mm diameter superhydrophobic surface steel sphere in 22°C water. (MOV 3979 kb)

Cooling of a hydrophilic and superhydrophobic sphere

Cooling of 20mm hydrophilic (left side) and superhydrophobic (right side) steel sphere in 100°C water. (MOV 8905 kb)

Cooling of a hydrophilic and superhydrophobic sphere

Cooling of 20mm hydrophilic (left side) and superhydrophobic (right side) steel sphere in 100°C water. (MOV 7046 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vakarelski, I., Patankar, N., Marston, J. et al. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274–277 (2012). https://doi.org/10.1038/nature11418

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing