Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cross-neutralization of influenza A viruses mediated by a single antibody loop

Abstract

Immune recognition of protein antigens relies on the combined interaction of multiple antibody loops, which provide a fairly large footprint and constrain the size and shape of protein surfaces that can be targeted. Single protein loops can mediate extremely high-affinity binding, but it is unclear whether such a mechanism is available to antibodies. Here we report the isolation and characterization of an antibody called C05, which neutralizes strains from multiple subtypes of influenza A virus, including H1, H2 and H3. X-ray and electron microscopy structures show that C05 recognizes conserved elements of the receptor-binding site on the haemagglutinin surface glycoprotein. Recognition of the haemagglutinin receptor-binding site is dominated by a single heavy-chain complementarity-determining region 3 loop, with minor contacts from heavy-chain complementarity-determining region 1, and is sufficient to achieve nanomolar binding with a minimal footprint. Thus, binding predominantly with a single loop can allow antibodies to target small, conserved functional sites on otherwise hypervariable antigens.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: C05 neutralizes multiple influenza virus subtypes from groups 1 and 2.
Figure 2: C05 protects mice from lethal virus challenge.
Figure 3: C05 binds the receptor-binding site on the HA1 head.
Figure 4: C05 epitope conservation across influenza A viruses.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Protein Data Bank

Data deposits

Coordinates and structure factors have been deposited in the Protein Data Bank under PDB codes 4FNK, 4FNL, 4FP8 and 4FQR. Electron microscopy maps have been deposited in the Electron Microscopy Data Bank (accession numbers 2138, 2139 and 2140). Nucleotide sequences for the C05 variable regions have been deposited in GenBank under accession numbers JX206996 and JX206997.

References

  1. Smith, T. J., Chase, E. S., Schmidt, T. J., Olson, N. H. & Baker, T. S. Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature 383, 350–354 (1996)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Labrijn, A. F. et al. Access of antibody molecules to the conserved coreceptor binding site on glycoprotein gp120 is sterically restricted on primary human immunodeficiency virus type 1. J. Virol. 77, 10557–10565 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rühlmann, A., Kukla, D., Schwager, P., Bartels, K. & Huber, R. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. Crystal structure determination and stereochemistry of the contact region. J. Mol. Biol. 77, 417–436 (1973)

    Article  PubMed  Google Scholar 

  4. McLellan, J. S. et al. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480, 336–343 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pejchal, R. et al. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334, 1097–1103 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pejchal, R. et al. Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1. Proc. Natl Acad. Sci. USA 107, 11483–11488 (2010)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Kashyap, A. K. et al. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies. Proc. Natl Acad. Sci. USA 105, 5986–5991 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kashyap, A. K. et al. Protection from the 2009 H1N1 pandemic influenza by an antibody from combinatorial survivor-based libraries. PLoS Pathogens 6, e1000990 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ekiert, D. C. et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Throsby, M. et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS ONE 3, e3942 (2008)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Sui, J. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nature Struct. Mol. Biol. 16, 265–273 (2009)

    Article  CAS  Google Scholar 

  12. Ekiert, D. C. et al. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333, 843–850 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Corti, D. et al. Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J. Clin. Invest. 120, 1663–1673 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wrammert, J. et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med. 208, 181–193 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wei, C. J. et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 329, 1060–1064 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Barbey-Martin, C. et al. An antibody that prevents the hemagglutinin low pH fusogenic transition. Virology 294, 70–74 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Fleury, D., Wharton, S. A., Skehel, J. J., Knossow, M. & Bizebard, T. Antigen distortion allows influenza virus to escape neutralization. Nature Struct. Biol. 5, 119–123 (1998)

    Article  CAS  PubMed  Google Scholar 

  19. Xu, R. et al. Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. Science 328, 357–360 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Whittle, J. R. R. et al. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc. Natl Acad. Sci. USA 108, 14216–14221 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fleury, D. et al. A complex of influenza hemagglutinin with a neutralizing antibody that binds outside the virus receptor binding site. Nature Struct. Biol. 6, 530–534 (1999)

    Article  CAS  PubMed  Google Scholar 

  22. Fleury, D., Daniels, R. S., Skehel, J. J., Knossow, M. & Bizebard, T. Structural evidence for recognition of a single epitope by two distinct antibodies. Proteins 40, 572–578 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. Yoshida, R. et al. Cross-protective potential of a novel monoclonal antibody directed against antigenic site B of the hemagglutinin of influenza A viruses. PLoS Pathog. 5, e1000350 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ohshima, N. et al. Naturally occurring antibodies in humans can neutralize a variety of influenza virus strains, including H3, H1, H2, and H5. J. Virol. 85, 11048–11057 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okuno, Y., Isegawa, Y., Sasao, F. & Ueda, S. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J. Virol. 67, 2552–2558 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, H. et al. Reactivity-based one-pot synthesis of oligomannoses: defining antigens recognized by 2G12, a broadly neutralizing anti-HIV-1 antibody. Angew. Chem. Int. Ed. 43, 1000–1003 (2004)

    Article  CAS  Google Scholar 

  27. Calarese, D. A. et al. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300, 2065–2071 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Mouquet, H. et al. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467, 591–595 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pancera, M. et al. Crystal structure of PG16 and chimeric dissection with somatically related PG9: structure–function analysis of two quaternary-specific antibodies that effectively neutralize HIV-1. J. Virol. 84, 8098–8110 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilson, P. C. et al. Somatic hypermutation introduces insertions and deletions into immunoglobulin V genes. J. Exp. Med. 187, 59–70 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Wildt, R. M., van Venrooij, W. J., Winter, G., Hoet, R. M. & Tomlinson, I. M. Somatic insertions and deletions shape the human antibody repertoire. J. Mol. Biol. 294, 701–710 (1999)

    Article  CAS  PubMed  Google Scholar 

  32. Krause, J. C. et al. An insertion mutation that distorts antibody binding site architecture enhances function of a human antibody. mBio 2, e00345–10 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhou, T. et al. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329, 811–817 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bao, Y. et al. The influenza virus resource at the National Center for Biotechnology Information. J. Virol. 82, 596–601 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. Hensley, S. E. et al. Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science 326, 734–736 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fleishman, S. J. et al. Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332, 816–821 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abhinandan, K. R. & Martin, A. C. Analysis and improvements to Kabat and structurally correct numbering of antibody variable domains. Mol. Immunol. 45, 3832–3839 (2008)

    Article  CAS  PubMed  Google Scholar 

  38. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fodor, E. et al. Rescue of influenza A virus from recombinant DNA. J. Virol. 73, 9679–9682 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Miyazaki, J. et al. Expression vector system based on the chicken β-actin promoter directs efficient production of interleukin-5. Gene 79, 269–277 (1989)

    Article  CAS  PubMed  Google Scholar 

  41. Brown, P. H., Cronan, J. E., Grotli, M. & Beckett, D. The biotin repressor: modulation of allostery by corepressor analogs. J. Mol. Biol. 337, 857–869 (2004)

    Article  CAS  PubMed  Google Scholar 

  42. Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Voss, N. R., Yoshioka, C. K., Radermacher, M., Potter, C. S. & Carragher, B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166, 205–213 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003)

    Article  PubMed  Google Scholar 

  45. Hohn, M. et al. SPARX, a new environment for cryo-EM image processing. J. Struct. Biol. 157, 47–55 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  47. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  PubMed  Google Scholar 

  50. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Tien and D. Marciano for automated crystal screening, the staff of the Advanced Photon Source (APS) GM/CA-CAT and Stanford Synchrotron Radiation Lightsource (SSRL) BL11-1 for beamline support, X. Dai and R. Stanfield for assistance with data collection and processing, M. Hothorn for assistance with ITC experiments, J. Paulson and D. Burton for comments and discussion, A. Estelles and R. Briante, L. Xu, S. Wang and D. Corn for technical support and P. Foreman for assistance with animal study design. This project was funded in part by National Institutes of Health (NIH) grant P01AI058113 (I.A.W.), a predoctoral fellowship from the Achievement Rewards for College Scientists Foundation (D.C.E.), grant GM080209 from the NIH Molecular Evolution Training Program (D.C.E.), the Skaggs Institute (I.A.W.), a career development fellowship from the Northeast Biodefense Center (U54-AI057158-Lipkin) (J.S.), National Institute of Allergy and Infectious Diseases (NIAID) grant U01AI070373 (R.W.), and Center for Research on Influenza Pathogenesis NIAID contract HHSN266200700010C (P.P.). Portions of this research were carried out at the SSRL, a national user facility operated by Stanford University on behalf of the US Department of Energy (DOE), Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by the NIH, National Center for Research Resources, Biomedical Technology Program, and the National Institute of General Medical Sciences (NIGMS). The GM/CA-CAT 23-ID-B beamline has been funded in whole or in part with federal funds from the National Cancer Institute (Y1-CO-1020) and NIGMS (Y1-GM-1104). Use of the APS was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract no. DE-AC02-06CH11357. The electron microscopy data presented here was collected at the National Resource for Automated Molecular Microscopy, which is supported by the NIH though the P41 program (RR017573) at the National Center for Research Resources. The JCSG is supported by NIH grant U54 GM094586. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the NIH. This is publication 21421 from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.K.K., M.A.D., R.E.O., A.M.F., M.H., L.H., R.A.L. and R.R.B. isolated and performed the initial characterization of C05; A.K.K., J.S., A.R., P.P. and R.W. designed and performed virus neutralization and in vivo experiments; D.C.E., M.A.D., R.E.O., A.M.F and A.K.K. expressed and purified proteins; D.C.E. determined and analysed the crystal structures with guidance from I.A.W.; G.B., D.C.E., M.A.D., R.E.O., A.M.F. and A.K.K. performed binding experiments; R.K., J.H.L. and A.B.W. carried out electron microscopy studies; D.C.E. and A.K.K. analysed the sequence data sets and D.C.E., I.A.W., R.R.B. and A.K.K. wrote the manuscript. All authors commented on the paper.

Corresponding authors

Correspondence to Ramesh R. Bhatt or Ian A. Wilson.

Ethics declarations

Competing interests

A.K.K., M.A.D., R.E.O., A.M.F., M.H., L.H. and R.R.B. are employees or former employees of Sea Lane Biotechnologies.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Figures 1-16, Supplementary Tables 1-4 and Supplementary References. (PDF 8990 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekiert, D., Kashyap, A., Steel, J. et al. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489, 526–532 (2012). https://doi.org/10.1038/nature11414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11414

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing