Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of 900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography—the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007)

  2. 2.

    et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 9, e1000582 (2011)

  3. 3.

    et al. EMAP and EMAGE: a framework for understanding spatially organized data. Neuroinformatics 1, 309–325 (2003)

  4. 4.

    et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011)

  5. 5.

    et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478, 519–523 (2011)

  6. 6.

    , , , & Removing obstacles in neuroscience drug discovery: the future path for animal models. Neuropsychopharmacology 34, 74–89 (2009)

  7. 7.

    et al. Anatomical mapping of functional activation in stereotactic coordinate space. Neuroimage 1, 43–53 (1992)

  8. 8.

    et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell 149, 483–496 (2012)

  9. 9.

    & in Handbook of Chemical Neuroanatomy. Dopamine (eds , , & ) Ch. I 1–107 (Elsevier, 2005)

  10. 10.

    & in Handbook of Chemical Neuroanatomy. (Dopamine) (eds , , , & ) Ch. IX 525–571 (Elsevier, 2005)

  11. 11.

    et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 62 494–509 S0896–6273(09)00286–4 (2009)

  12. 12.

    et al. Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nature Neurosci. 14, 19–21 (2011)

  13. 13.

    Huang da, W. Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4, 44–57 (2009)

  14. 14.

    , & Neurochemical phenotype of corticocortical connections in the macaque monkey: quantitative analysis of a subset of neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices. J. Comp. Neurol. 362, 109–133 (1995)

  15. 15.

    , , & Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000)

  16. 16.

    & A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, (2005)

  17. 17.

    et al. Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc. Natl Acad. Sci. USA 103, 17402–17407 (2006)

  18. 18.

    et al. Functional organization of the transcriptome in human brain. Nature Neurosci. 11, 1271–1282 (2008)

  19. 19.

    , & Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc. Natl Acad. Sci. USA 107, 12698–12703 (2010)

  20. 20.

    , , & Is my network module preserved and reproducible? PLoS Comput. Biol. 7, e1001057 (2011)

  21. 21.

    et al. GENCODE: producing a reference annotation for ENCODE. Genome Biol. 7, (suppl. 1)1–9 (2006)

  22. 22.

    & in The Human Nervous System (ed. ) 771–755 (Academic, 1990)

  23. 23.

    et al. Transcriptional architecture of the primate neocortex. Neuron 73, 1083–1099 (2012)

  24. 24.

    et al. Digital atlasing and standardization in the mouse brain. PLoS Comput. Biol. 7, e1001065 (2011)

  25. 25.

    et al. Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 39, 1064–1080 (2008)

  26. 26.

    , , , & Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5, 621–628 (2008)

  27. 27.

    et al. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nature Struct. Mol. Biol. 18, 1435–1440 (2011)

  28. 28.

    & Cajal on the Cerebral Cortex: an Annotated Translation of the Complete Writings (Oxford Univ. Press, 1988)

  29. 29.

    et al. Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur. Neuropsychopharmacol. 12, 587–599 (2002)

  30. 30.

    & Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991)

  31. 31.

    et al. A transcriptomic atlas of mouse neocortical layers. Neuron 71, 605–616 (2011)

  32. 32.

    et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011)

  33. 33.

    The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009)

  34. 34.

    & Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004)

  35. 35.

    , , , & Identifying biological themes within lists of genes with EASE. Genome Biol. 4, R70 (2003)

Download references


We wish to thank the Allen Institute founders, P. G. Allen and J. Allen, for their vision, encouragement, and support. We express our gratitude to past and present Allen Institute staff members R. Adams, K. Aiona, A. Alpisa, J. Arnold, C. Bennet, K. Brouner, S. Butler, E. Byrnes, S. Caldejon, J. Campiche, A. Carey, J. Chen, C. Copeland, C. Cuhaciyan, T. Desta, N. Dotson, S. Faber, T. Fliss, E. Fulfs, G. Gee, T. Gilbert, L. Gourley, G. Gu, J. Heilman, N. Ivanov, K. Keyser, A. Kriedberg, J. Laoenkue, F. Lee, S. Levine, L. Luong, N. Mastan, N. Mosqueda, E. Mott, N. Motz, D. Muzia, K. Ngo, A. Oldre, E. Olson, J. Parente, J. Phillips, L. Potekhina, T. Roberts, K. Roll, D. Rosen, M. Sarreal, S. Shapouri, N. Shapovalova, C. Simpson, D. Simpson, M. Smith, N. Stewart, K. Sweeney, A. Szafer, L. Velasquez, U. Wagley, W. Wakeman, C. White and B. Youngstrom for their technical assistance. We thank C. Long for mechanical engineering contract work. We thank R. Gullapalli, A. McMillan and R. Morales for post-mortem magnetic resonance imaging and radiology interpretation of MR data; J. Cottrell, M. Davis, R. Johnson, K. Moraniec, R. Vigorito, A. Weldon and the NICHD Brain and Tissue Bank for Developmental Disorders for tissue acquisition and processing; J. Davis for donor coordination; F. Mamdani, M. Martin, E. Moon, L. Morgan, B. Rollins and D. Walsh for tissue processing and psychological autopsy (DW); D. Patel for magnetic resonance imaging; and J. Sonnen for consultation on tissue microneuropathology. We also thank the External RNA Controls Consortium (ERCC), the US National Institute of Standards (NIST) and Technology, and M. Salit for access to ERCC transcripts during Phase V testing. We are grateful to Beckman Coulter Genomics (formerly Cogenics) and their staff P. Hurban, E. Lobenhofer, K. Phillips, A. Rouse and S. Beaver for microarray data generation and design of the custom Agilent array. We also wish to thank the Allen Human Brain Atlas Advisory Council members D. Geschwind, R. Gibbs, P. Hof, E. Jones, C. Koch, C. Saper, L. Swanson, A. Toga and D. Van Essen for their scientific guidance and dedication to the successful execution of this project. The project described was supported in part by Grant Numbers 1C76HF15069-01-00 and 1 1C76HF19619-01-00 from the Department of Health and Human Services Health Resources and Services Administration Awards and its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Department of Health and Human Services Health Resources and Services Administration Awards. S.G.N.G and L.V.L. were supported by the MRCD, Wellcome Trust and European Union Seventh Framework Programme under grants 241498 EUROSPIN, 242167 SynSys, and 241995 GENCODYS Projects.

Author information

Author notes

    • Michael J. Hawrylycz
    •  & Ed S. Lein

    These authors contributed equally to this work.


  1. Allen Institute for Brain Science, Seattle, Washington 98103, USA

    • Michael J. Hawrylycz
    • , Ed S. Lein
    • , Angela L. Guillozet-Bongaarts
    • , Elaine H. Shen
    • , Lydia Ng
    • , Jeremy A. Miller
    • , Kimberly A. Smith
    • , Amanda Ebbert
    • , Zackery L. Riley
    • , Chris Abajian
    • , Amy Bernard
    • , Darren Bertagnolli
    • , Andrew F. Boe
    • , M. Mallar Chakravarty
    • , Mike Chapin
    • , Jimmy Chong
    • , Rachel A. Dalley
    • , Chinh Dang
    • , Suvro Datta
    • , Nick Dee
    • , Tim A. Dolbeare
    • , Vance Faber
    • , David Feng
    • , Jeff Goldy
    • , Benjamin W. Gregor
    • , Zeb Haradon
    • , John G. Hohmann
    • , Robert E. Howard
    • , Jayson M. Jochim
    • , Marty Kinnunen
    • , Christopher Lau
    • , Evan T. Lazarz
    • , Changkyu Lee
    • , Tracy A. Lemon
    • , Yang Li
    • , John A. Morris
    • , Caroline C. Overly
    • , Patrick D. Parker
    • , Sheana E. Parry
    • , Melissa Reding
    • , Joshua J. Royall
    • , Clifford R. Slaughterbeck
    • , Andy J. Sodt
    • , Susan M. Sunkin
    • , Beryl E. Swanson
    • , Derric Williams
    • , Paul Wohnoutka
    • , Christof Koch
    •  & Allan R. Jones
  2. Genes to Cognition Programme, Edinburgh University, Edinburgh EH16 4SB, UK

    • Louie N. van de Lagemaat
    •  & Seth G. N. Grant
  3. MIRA Institute, University of Twente & Donders Institute, Radboud University Nijmegen, Nijmegen, Netherlands

    • Christian F. Beckmann
  4. Department of Psychiatry & Human Behavior, University of California, Irvine, California 92697, USA

    • Preston M. Cartagena
  5. Kimel Family Translational Imaging-Genetics Laboratory, Centre for Addiction and Mental Health Toronto, Ontario M5S 2S1, Canada

    • M. Mallar Chakravarty
  6. University of Maryland School of Medicine, Department of Diagnostic Radiology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA

    • Barry David Daly
  7. Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA

    • David R. Fowler
  8. Department of Radiology, University of Washington, Seattle, Washington 98195, USA

    • David R. Haynor
  9. Department of Human Genetics, Gonda Research Center, David Geffen School of Medicine, Los Angeles, California 90095, USA

    • Steve Horvath
  10. Banyan Biomarkers, Inc., Alachua, Florida 32615, USA

    • Andreas Jeromin
  11. Office of the Chief Medical Examiner, Baltimore, MD, Department of Pediatrics, University of Maryland, Baltimore, Maryland 21201, USA

    • Ling Li
  12. Department of Neuroscience, Georgetown University, School of Medicine, Washington DC 20007, USA

    • Jay Schulkin
  13. Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, School of Medicine, University of California, Irvine, California 92697, USA

    • Pedro Adolfo Sequeira
    •  & Marquis P. Vawter
  14. Histion LLC, Everett, Washington 98204, USA

    • Simon C. Smith
  15. The Eunice Kennedy Shriver NICHD Brain and Tissue Bank for Developmental Disorders, University of Maryland, Baltimore, Maryland 21201, USA

    • H. Ronald Zielke
  16. Program in Neurogenetics, Department of Neurology and Department of Human Genetics, and Semel Institute, David Geffen School of Medicine-UCLA, Los Angeles, California 90095, USA

    • Daniel H. Geschwind
  17. Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029, USA

    • Patrick R. Hof
  18. FMRIB, Oxford University, Oxford OX3 9DU, UK

    • Stephen M. Smith
  19. Computation & Neural Systems, California Institute of Technology, Pasadena, California 91125, USA

    • Christof Koch


  1. Search for Michael J. Hawrylycz in:

  2. Search for Ed S. Lein in:

  3. Search for Angela L. Guillozet-Bongaarts in:

  4. Search for Elaine H. Shen in:

  5. Search for Lydia Ng in:

  6. Search for Jeremy A. Miller in:

  7. Search for Louie N. van de Lagemaat in:

  8. Search for Kimberly A. Smith in:

  9. Search for Amanda Ebbert in:

  10. Search for Zackery L. Riley in:

  11. Search for Chris Abajian in:

  12. Search for Christian F. Beckmann in:

  13. Search for Amy Bernard in:

  14. Search for Darren Bertagnolli in:

  15. Search for Andrew F. Boe in:

  16. Search for Preston M. Cartagena in:

  17. Search for M. Mallar Chakravarty in:

  18. Search for Mike Chapin in:

  19. Search for Jimmy Chong in:

  20. Search for Rachel A. Dalley in:

  21. Search for Barry David Daly in:

  22. Search for Chinh Dang in:

  23. Search for Suvro Datta in:

  24. Search for Nick Dee in:

  25. Search for Tim A. Dolbeare in:

  26. Search for Vance Faber in:

  27. Search for David Feng in:

  28. Search for David R. Fowler in:

  29. Search for Jeff Goldy in:

  30. Search for Benjamin W. Gregor in:

  31. Search for Zeb Haradon in:

  32. Search for David R. Haynor in:

  33. Search for John G. Hohmann in:

  34. Search for Steve Horvath in:

  35. Search for Robert E. Howard in:

  36. Search for Andreas Jeromin in:

  37. Search for Jayson M. Jochim in:

  38. Search for Marty Kinnunen in:

  39. Search for Christopher Lau in:

  40. Search for Evan T. Lazarz in:

  41. Search for Changkyu Lee in:

  42. Search for Tracy A. Lemon in:

  43. Search for Ling Li in:

  44. Search for Yang Li in:

  45. Search for John A. Morris in:

  46. Search for Caroline C. Overly in:

  47. Search for Patrick D. Parker in:

  48. Search for Sheana E. Parry in:

  49. Search for Melissa Reding in:

  50. Search for Joshua J. Royall in:

  51. Search for Jay Schulkin in:

  52. Search for Pedro Adolfo Sequeira in:

  53. Search for Clifford R. Slaughterbeck in:

  54. Search for Simon C. Smith in:

  55. Search for Andy J. Sodt in:

  56. Search for Susan M. Sunkin in:

  57. Search for Beryl E. Swanson in:

  58. Search for Marquis P. Vawter in:

  59. Search for Derric Williams in:

  60. Search for Paul Wohnoutka in:

  61. Search for H. Ronald Zielke in:

  62. Search for Daniel H. Geschwind in:

  63. Search for Patrick R. Hof in:

  64. Search for Stephen M. Smith in:

  65. Search for Christof Koch in:

  66. Search for Seth G. N. Grant in:

  67. Search for Allan R. Jones in:


A.R.J., A.L.G.-B., E.H.S. and K.A.S. contributed significantly to overall project design. A.L.G.-B., E.H.S., K.A.S., A.E. and P.W. managed the tissue and sample processing in the laboratory. D.B., A.F.B., R.A.D., J.G., B.W.G., R.E.H., M.K., T.A.L., P.D.P., S.E.P., M.R., J.J.R. and B.E.S. contributed to tissue and sample processing. E.H.S. and Z.L.R. contributed to establishing the tissue acquisition pipeline. P.M.C., B.D.D., D.R.F., L.L., P.A.S., M.P.V. and H.R.Z. contributed to tissue acquisition and MR imaging. Z.L.R., A.B., M.M.C., N.D., A.J., J.M.J., E.T.L., S.C.S. and P.R.H. contributed to protocol development. S.D., J.M.J., C.R.S. and D.W. provided engineering support. A.L.G.-B., R.A.D., P.D.P., J.G.H., J.A.Mo., J.J.R. and B.E.S. contributed to the neuroanatomical design and implementation. L.N. and C.D. managed the creation of the data pipeline, visualization and mining tools. L.N., C.D. and C.C.O. contributed to the overall online product concept. L.N., C.A., M.C., J.C., T.A.D., D.F., Z.H., C.La., Y.L. and A.J.S. contributed to the creation of the data pipeline, visualization and mining tools. M.J.H., E.S.L., J.A.Mi., D.H.G., L.N.L., C.F.B., S.M.Sm., S.G.N.G., A.LG.-.B., E.H.S., K.A.S., A.B., D.B., V.F., J.G., D.R.H., S.H., C.Le., J.S., S.M.Su., P.R.H. and C.K. contributed to data analysis and interpretation. A.R.J. supervised the overall project, and the manuscript was written by M.J.H. and E.S.L. with input from other authors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Michael J. Hawrylycz.

Supplementary information

PDF files

  1. 1.

    Supplementary Methods

    This file contains Supplementary Methods 1-3 (see pages 1-2 for details), which describe in detail the methodology of tissue preparation, data generation and data analysis techniques utilized for both the project and the manuscript.

  2. 2.

    Supplementary Information

    This file contains Supplementary Figures 1-14 and legends for Supplementary Tables 1-10.

Zip files

  1. 1.

    Supplementary Tables

    This file contains Supplementary Tables 1-10 (see Supplementary Information file for legends).

About this article

Publication history






Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.