Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies

Abstract

In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster’s lifetime1,2,3, leading to continuous ‘cooling flows’ of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates4,5 and cool gas masses6 for these ‘cool-core’ clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow7,8,9,10. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 1045 erg s−1) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: False-colour images of the galaxies and intracluster plasma in the galaxy cluster SPT-CLJ2344-4243.
Figure 2: Optical and near-infrared emission-line spectra of the central galaxy in SPT-CLJ2344-4243.
Figure 3: Spectral energy distribution of the central galaxy in SPT-CLJ2344-4243 from the far-ultraviolet to the far-infrared.

References

  1. Lea, S. M., Silk, J., Kellogg, E. & Murray, S. Thermal-Bremsstrahlung interpretation of cluster X-ray sources. Astrophys. J. 184, L105 (1973)

    ADS  Article  Google Scholar 

  2. Cowie, L. L. & Binney, J. Radiative regulation of gas flow within clusters of galaxies—a model for cluster X-ray sources. Astrophys. J. 215, 723–732 (1977)

    CAS  ADS  Article  Google Scholar 

  3. Fabian, A. C. & Nulsen, P. E. J. Subsonic accretion of cooling gas in clusters of galaxies. Mon. Not. R. Astron. Soc. 180, 479–484 (1977)

    ADS  Article  Google Scholar 

  4. O'Dea, C. P. et al. An infrared survey of brightest cluster galaxies. II. Why are some brightest cluster galaxies forming stars? Astrophys. J. 681, 1035–1045 (2008)

    CAS  ADS  Article  Google Scholar 

  5. McDonald, M., Veilleux, S., Rupke, D. S. N., Mushotzky, R. & Reynolds, C. Star formation efficiency in the cool cores of galaxy clusters. Astrophys. J. 734, 95 (2011)

    ADS  Article  Google Scholar 

  6. Edge, A. C. The detection of molecular gas in the central galaxies of cooling flow clusters. Mon. Not. R. Astron. Soc. 328, 762–782 (2001)

    ADS  Article  Google Scholar 

  7. McNamara, B. R. & Nulsen, P. E. J. Heating hot atmospheres with active galactic nuclei. Annu. Rev. Astron. Astrophys. 45, 117–175 (2007)

    ADS  Article  Google Scholar 

  8. Fabian, A. C. Observational evidence of AGN feedback. Annu. Rev. Astron. Astrophys. (in the press); preprint at http://arxiv.org/abs/1204.4114 (2012)

  9. Mathews, W. G. Stopping cooling flows with cosmic-ray feedback. Astrophys. J. Lett. 695, L49–L52 (2009)

    CAS  ADS  Article  Google Scholar 

  10. Gómez, P. L., Loken, C., Roettiger, K. & Burns, J. O. Do cooling flows survive cluster mergers? Astrophys. J. 569, 122–133 (2002)

    ADS  Article  Google Scholar 

  11. Williamson, R. et al. A Sunyaev-Zel'dovich-selected sample of the most massive galaxy clusters in the 2500 deg2 South Pole Telescope Survey. Astrophys. J. 738, 139 (2011)

    ADS  Article  Google Scholar 

  12. Carlstrom, J. E. et al. The 10 meter South Pole Telescope. Proc. Astron. Soc. Pacif. 123, 568–581 (2011)

    ADS  Article  Google Scholar 

  13. Vikhlinin, A. et al. Chandra Cluster Cosmology Project. II. Samples and X-ray data reduction. Astrophys. J. 692, 1033–1059 (2009)

    ADS  Article  Google Scholar 

  14. Menanteau, F. et al. The Atacama Cosmology Telescope: ACT-CL J0102–4915 “El Gordo”, a massive merging cluster at redshift 0.87. Astrophys. J. 748, 7 (2011)

    ADS  Article  Google Scholar 

  15. Foley, R. J. et al. Discovery and cosmological implications of SPT-CL J2106–5844, the most massive known cluster at z>1. Astrophys. J. 731, 86 (2011)

    ADS  Article  Google Scholar 

  16. Fabian, A. C. et al. Chandra imaging of the complex X-ray core of the Perseus cluster. Mon. Not. R. Astron. Soc. 318, L65–L68 (2000)

    ADS  Article  Google Scholar 

  17. Allen, S. W., Fabian, A. C. & Kneib, J. P. A combined X-ray and gravitational lensing study of the massive cooling-flow cluster PKS 0745–191. Mon. Not. R. Astron. Soc. 279, 615–635 (1996)

    ADS  Article  Google Scholar 

  18. Vikhlinin, A. et al. in Heating versus Cooling in Galaxies and Clusters of Galaxies (eds Böhringer, H., Pratt, G. W., Finoguenov, A. & Schuecker, P. ) 48 (2007); preprint at http://arxiv.org/abs/astro-ph/0611438.

  19. Santos, J. S. et al. Searching for cool core clusters at high redshift. Astron. Astrophys. 483, 35–47 (2008)

    CAS  ADS  Article  Google Scholar 

  20. McDonald, M. Optical line emission in brightest cluster galaxies at 0 < z 0.6: evidence for a lack of strong cool cores 3.5 Gyr ago? Astrophys. J. Lett. 742, L35 (2011)

    ADS  Article  Google Scholar 

  21. Hu, E. M., Cowie, L. L. & Wang, Z. Long-slit spectroscopy of gas in the cores of X-ray luminous clusters. Astrophys. J. 59 (Suppl.). 447–498 (1985)

    CAS  ADS  Article  Google Scholar 

  22. Heckman, T. M., Baum, S. A., van Breugel, W. J. M. & McCarthy, P. Dynamical, physical, and chemical properties of emission-line nebulae in cooling flows. Astrophys. J. 338, 48–77 (1989)

    CAS  ADS  Article  Google Scholar 

  23. McDonald, M., Veilleux, S., Rupke, D. S. N. & Mushotzky, R. On the origin of the extended Hα filaments in cooling flow clusters. Astrophys. J. 721, 1262–1283 (2010)

    CAS  ADS  Article  Google Scholar 

  24. Conselice, C. J., Gallagher, J. S., III & Wyse, R. F. G. On the nature of the NGC 1275 system. Astron. J. 122, 2281–2300 (2001)

    CAS  ADS  Article  Google Scholar 

  25. Sparks, W. B., Biretta, J. A. & Macchetto, F. The jet of M87 at tenth-arcsecond resolution: optical, ultraviolet, and radio observations. Astrophys. J. 473, 254 (1996)

    ADS  Article  Google Scholar 

  26. McDonald, M., Veilleux, S. & Rupke, D. S. N. Optical spectroscopy of Hα filaments in cool core clusters: kinematics, reddening, and sources of ionization. Astrophys. J. 746, 153 (2012)

    ADS  Article  Google Scholar 

  27. McNamara, B. R. et al. The starburst in the Abell 1835 Cluster Central Galaxy: a case study of galaxy formation regulated by an outburst from a supermassive black hole. Astrophys. J. 648, 164–175 (2006)

    CAS  ADS  Article  Google Scholar 

  28. Allen, S. W. The properties of cooling flows in X-ray luminous clusters of galaxies. Mon. Not. R. Astron. Soc. 315, 269–295 (2000)

    CAS  ADS  Article  Google Scholar 

  29. Gitti, M. & Schindler, S. XMM-Newton observation of the most X-ray-luminous galaxy cluster RX J1347.5–1145. Astron. Astrophys. 427, L9–L12 (2004)

    CAS  ADS  Article  Google Scholar 

  30. Polletta, M. et al. Spectral energy distributions of hard X-ray selected active galactic nuclei in the XMM-Newton Medium Deep Survey. Astrophys. J. 663, 81–102 (2007)

    CAS  ADS  Article  Google Scholar 

Download references

Acknowledgements

M.McD. was supported at MIT by NASA through the Chandra X-ray Observatory. The South Pole Telescope is supported by the National Science Foundation, with partial support provided by the Kavli Foundation, and the Moore Foundation. Support for X-ray analysis was provided by NASA. Work at McGill University is supported by NSERC, the CRC programme, and CIfAR, and at Harvard University by the NSF. S.V. acknowledges a Senior NPP Award held at the NASA Goddard Space Flight Center. R.K. acknowledges a NASA Hubble Fellowship, B.A.B. acknowledges a KICP Fellowship, M.A.D. acknowledges an Alfred P. Sloan Research Fellowship, and O.Z. acknowledges a BCCP fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.McD. reduced the X-ray and optical long slit spectroscopic data, performed the main analysis, and wrote the paper, with significant assistance from B.A.B., R.J.F. and S.V., and comments from all other authors. M.B. and J.R. reduced multi-slit observations of SPT-CLJ2344-4243 and performed the velocity dispersion analysis. P.S. and R.S. obtained the infrared spectroscopy, and P.S. reduced these data. All other authors (listed alphabetically) have contributed as part of the South Pole Telescope collaboration, by either their involvement with the initial cluster discovery with the South Pole Telescope and/or multi-wavelength follow-up.

Corresponding author

Correspondence to M. McDonald.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-4, Supplementary Figures 1-6, Supplementary Tables 1-2 and additional references. (PDF 306 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McDonald, M., Bayliss, M., Benson, B. et al. A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies. Nature 488, 349–352 (2012). https://doi.org/10.1038/nature11379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11379

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing