Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum nonlinear optics with single photons enabled by strongly interacting atoms

Abstract

The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering1,2, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding to single photons is negligibly weak. Here we demonstrate a medium that is nonlinear at the level of individual quanta, exhibiting strong absorption of photon pairs while remaining transparent to single photons. The quantum nonlinearity is obtained by coherently coupling slowly propagating photons3,4,5 to strongly interacting atomic Rydberg states6,7,8,9,10,11,12 in a cold, dense atomic gas13,14. Our approach paves the way for quantum-by-quantum control of light fields, including single-photon switching15, all-optical deterministic quantum logic16 and the realization of strongly correlated many-body states of light17.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rydberg-blockade-mediated interaction between slow photons.
Figure 2: Two-photon optical nonlinearity.
Figure 3: Saturation behaviour of the transmission.
Figure 4: Dependence of the correlation function on EIT parameters.

Similar content being viewed by others

References

  1. Yamamoto, Y. & Imamoglu, A. Mesoscopic Quantum Optics (Wiley & Sons, 1999)

    MATH  Google Scholar 

  2. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Tong, D. et al. Local blockade of Rydberg excitation in an ultracold gas. Phys. Rev. Lett. 93, 063001 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Singer, K., Reetz-Lamour, M., Amthor, T., Marcassa, L. G. & Weidemüller, M. Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms. Phys. Rev. Lett. 93, 163001 (2004)

    Article  ADS  Google Scholar 

  8. Liebisch, T. C., Reinhard, A., Berman, P. R. & Raithel, G. Atom counting statistics in ensembles of interacting Rydberg atoms. Phys. Rev. Lett. 95, 253002 (2005)

    Article  ADS  Google Scholar 

  9. Heidemann, R. et al. Rydberg excitation of Bose-Einstein condensates. Phys. Rev. Lett. 100, 033601 (2008)

    Article  ADS  Google Scholar 

  10. Johnson, T. A. et al. Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions. Phys. Rev. Lett. 100, 113003 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Urban, E. et al. Observation of Rydberg blockade between two atoms. Nature Phys. 5, 110–114 (2009)

    Article  ADS  CAS  Google Scholar 

  12. Gaëtan, A. et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nature Phys. 5, 115–118 (2009)

    Article  ADS  Google Scholar 

  13. Pritchard, J. D. et al. Cooperative atom-light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett. 105, 193603 (2010)

    Article  ADS  CAS  Google Scholar 

  14. Pritchard, J. D., Weatherill, K. J. & Adams, C. S. Non-linear optics using cold Rydberg atoms. Preprint at http://arXiv.org/abs/1205.4890v1 (2012)

  15. Gorshkov, A. V., Otterbach, J., Fleischhauer, M., Pohl, T. & Lukin, M. D. Photon-photon interactions via Rydberg blockade. Phys. Rev. Lett. 107, 133602 (2011)

    Article  ADS  Google Scholar 

  16. Shahmoon, E., Kurizki, G., Fleischhauer, M. & Petrosyan, D. Strongly interacting photons in hollow-core waveguides. Phys. Rev. A 83, 033806 (2011)

    Article  ADS  Google Scholar 

  17. Chang, D. E. et al. Crystallization of strongly interacting photons in a nonlinear optical fibre. Nature Phys. 4, 884–889 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Schuster, I. et al. Nonlinear spectroscopy of photons bound to one atom. Nature Phys. 4, 382–385 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Reinhard, A. et al. Strongly correlated photons on a chip. Nature Photon. 6, 93–96 (2011)

    Article  ADS  Google Scholar 

  21. Tanji-Suzuki, H., Chen, W., Landig, R., Simon, J. & Vuletić, V. Vacuum-induced transparency. Science 333, 1266–1269 (2011)

    Article  ADS  CAS  Google Scholar 

  22. Petrosyan, D., Otterbach, J. & Fleischhauer, M. Electromagnetically induced transparency with Rydberg atoms. Phys. Rev. Lett. 107, 213601 (2011)

    Article  ADS  Google Scholar 

  23. Sevinçli, S., Henkel, N., Ates, C. & Pohl, T. Nonlocal nonlinear optics in cold Rydberg gases. Phys. Rev. Lett. 107, 153001 (2011)

    Article  ADS  Google Scholar 

  24. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010)

    Article  ADS  CAS  Google Scholar 

  25. Møller, D., Madsen, L. B. & Mølmer, K. Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage. Phys. Rev. Lett. 100, 170504 (2008)

    Article  ADS  Google Scholar 

  26. Müller, M., Lesanovsky, I., Weimer, H., Büchler, H. P. & Zoller, P. Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102, 170502 (2009)

    Article  ADS  Google Scholar 

  27. Lukin, M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001)

    Article  ADS  CAS  Google Scholar 

  28. Bajcsy, M. et al. Efficient all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett. 102, 203902 (2009)

    Article  ADS  CAS  Google Scholar 

  29. Venkataraman, V., Saha, K., Londero, P. & Gaeta, A. L. Few-photon all-optical modulation in a photonic band-gap fiber. Phys. Rev. Lett. 107, 193902 (2011)

    Article  ADS  Google Scholar 

  30. Dudin, Y. O. & Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887–889 (2012)

    Article  ADS  CAS  Google Scholar 

  31. Han, Y., He, B., Heshami, K., Li, C.-Z. & Simon, C. Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles. Phys. Rev. A 81, 052311 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge technical support from A. Mazurenko. This work was supported in part by NSF, CUA and the AFOSR Quantum Memories MURI. A.V.G. acknowledges funding from the Lee A. DuBridge Foundation and the IQIM, an NSF Physics Frontiers Center with support from the Gordon and Betty Moore Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was designed and built by S.H., T. Peyronel and Q.-Y.L. Measurements and analysis of the data presented were carried out by T. Peyronel, O.F. and Q.-Y.L. The theoretical analysis was performed by A.V.G. and T. Pohl. All experimental and theoretical work was supervised by M.D.L. and V.V. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Mikhail D. Lukin or Vladan Vuletić.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data and Supplementary Figures 1-4. (PDF 383 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyronel, T., Firstenberg, O., Liang, QY. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012). https://doi.org/10.1038/nature11361

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11361

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing