Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dopamine neurons modulate pheromone responses in Drosophila courtship learning

Abstract

Learning through trial-and-error interactions allows animals to adapt innate behavioural ‘rules of thumb’ to the local environment, improving their prospects for survival and reproduction. Naive Drosophila melanogaster males, for example, court both virgin and mated females, but learn through experience to selectively suppress futile courtship towards females that have already mated1. Here we show that courtship learning reflects an enhanced response to the male pheromone cis-vaccenyl acetate (cVA), which is deposited on females during mating and thus distinguishes mated females from virgins. Dissociation experiments suggest a simple learning rule in which unsuccessful courtship enhances sensitivity to cVA. The learning experience can be mimicked by artificial activation of dopaminergic neurons, and we identify a specific class of dopaminergic neuron that is critical for courtship learning. These neurons provide input to the mushroom body (MB) γ lobe, and the DopR1 dopamine receptor is required in MBγ neurons for both natural and artificial courtship learning. Our work thus reveals critical behavioural, cellular and molecular components of the learning rule by which Drosophila adjusts its innate mating strategy according to experience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experience enhances the behavioural response to cVA.
Figure 2: Activation of dopaminergic neurons is necessary and sufficient for learning.
Figure 3: Courtship learning requires synaptic transmission of aSP13 neurons.
Figure 4: DopR1 functions in MBγ neurons.

Similar content being viewed by others

References

  1. Siegel, R. W. & Hall, J. C. Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc. Natl Acad. Sci. USA 76, 3430–3434 (1979)

    Article  ADS  CAS  Google Scholar 

  2. Tompkins, L. Genetic analysis of sex appeal in Drosophila. Behav. Genet. 14, 411–440 (1984)

    Article  CAS  Google Scholar 

  3. Jallon, J. M., Antony, C. & Benamar, O. Un anti-aphrodisiaque produit part les males de Drosophila et transféré aux femelles lors de la copulation. C. R. Acad. Sci. Paris 292, 1147–1149 (1981)

    Google Scholar 

  4. Butterworth, F. M. Lipids of Drosophila: a newly detected lipid in the male. Science 163, 1356–1357 (1969)

    Article  ADS  CAS  Google Scholar 

  5. Everaerts, C., Farine, J. P., Cobb, M. & Ferveur, J. F. Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PLoS ONE 5, e9607 (2010)

    Article  ADS  Google Scholar 

  6. Kurtovic, A., Widmer, A. & Dickson, B. J. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446, 542–546 (2007)

    Article  ADS  CAS  Google Scholar 

  7. Ha, T. S. & Smith, D. P. A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J. Neurosci. 26, 8727–8733 (2006)

    Article  CAS  Google Scholar 

  8. van der Goes van Naters, W. & Carlson, J. R. Receptors and neurons for fly odors in Drosophila. Curr. Biol. 17, 606–612 (2007)

    Article  CAS  Google Scholar 

  9. Root, C. M., Semmelhack, J. L., Wong, A. M., Flores, J. & Wang, J. W. Propagation of olfactory information in Drosophila. Proc. Natl Acad. Sci. USA 104, 11826–11831 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Bray, S. & Amrein, H. A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 39, 1019–1029 (2003)

    Article  CAS  Google Scholar 

  11. Chen, P. S. et al. A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54, 291–298 (1988)

    Article  CAS  Google Scholar 

  12. Nakayama, S., Kaiser, K. & Aigaki, T. Ectopic expression of sex-peptide in a variety of tissues in Drosophila females using the P[GAL4] enhancer-trap system. Mol. Gen. Genet. 254, 449–455 (1997)

    Article  CAS  Google Scholar 

  13. Liu, H. & Kubli, E. Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 100, 9929–9933 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Wise, R. A. Dopamine, learning and motivation. Nature Rev. Neurosci. 5, 483–494 (2004)

    Article  CAS  Google Scholar 

  15. Waddell, S. Dopamine reveals neural circuit mechanisms of fly memory. Trends Neurosci. 33, 457–464 (2010)

    Article  CAS  Google Scholar 

  16. Neckameyer, W. S. Dopamine and mushroom bodies in Drosophila: experience-dependent and -independent aspects of sexual behavior. Learn. Mem. 5, 157–165 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamada, F. N. et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217–220 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Friggi-Grelin, F. et al. Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J. Neurobiol. 54, 618–627 (2003)

    Article  CAS  Google Scholar 

  19. Claridge-Chang, A. et al. Writing memories with light-addressable reinforcement circuitry. Cell 139, 405–415 (2009)

    Article  CAS  Google Scholar 

  20. Aso, Y. et al. Specific dopaminergic neurons for the formation of labile aversive memory. Curr. Biol. 20, 1445–1451 (2010)

    Article  CAS  Google Scholar 

  21. Dickson, B. J. Wired for sex: the neurobiology of Drosophila mating decisions. Science 322, 904–909 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Keleman, K., Kruttner, S., Alenius, M. & Dickson, B. J. Function of the Drosophila CPEB protein Orb2 in long-term courtship memory. Nature Neurosci. 10, 1587–1593 (2007)

    Article  CAS  Google Scholar 

  23. Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001)

    Article  CAS  Google Scholar 

  24. Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L. & Dickson, B. J. Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795–807 (2005)

    Article  CAS  Google Scholar 

  25. Yu, J. Y., Kanai, M. I., Demir, E., Jefferis, G. S. & Dickson, B. J. Cellular organization of the neural circuit that drives Drosophila courtship behavior. Curr. Biol. 20, 1602–1614 (2010)

    Article  CAS  Google Scholar 

  26. Zars, T., Fischer, M., Schulz, R. & Heisenberg, M. Localization of a short-term memory in Drosophila. Science 288, 672–675 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Isabel, G., Pascual, A. & Preat, T. Exclusive consolidated memory phases in Drosophila. Science 304, 1024–1027 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Rong, Y. S. & Golic, K. G. Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Saudan, P. et al. Ductus ejaculatorius peptide 99B (DUP99B), a novel Drosophila melanogaster sex-peptide pheromone. Eur. J. Biochem. 269, 989–997 (2002)

    Article  CAS  Google Scholar 

  30. Hadjieconomou, D. et al. Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nature Methods 8, 260–266 (2011)

    Article  CAS  Google Scholar 

  31. Krashes, M. J., Keene, A. C., Leung, B., Armstrong, J. D. & Waddell, S. Sequential use of mushroom body neuron subsets during Drosophila odor memory processing. Neuron 53, 103–115 (2007)

    Article  CAS  Google Scholar 

  32. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007)

    Article  ADS  CAS  Google Scholar 

  33. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994)

    Article  CAS  Google Scholar 

  34. Kamyshev, N. G., Iliadi, K. G. & Bragina, J. V. Drosophila conditioned courtship: two ways of testing memory. Learn. Mem. 6, 1–20 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank E. Leitner for performing the gas chromatography–mass spectrometry analysis; P. Garrity, U. Heberlein, M. Heisenberg, E. Kubli, S. Waddell, the Drosophila Genetic Resource Centre, the Bloomington Stock Center and the VDRC for fly stocks; K. Jandrasits and Z. Portik-Dobos for technical assistance; M. Zimmer for critical comments on the manuscript. Basic research at the Institute of Molecular Pathology is funded in part by Boehringer Ingelheim GmbH. This work was additionally supported by grants from the European Research Council (B.J.D.) and the Austrian Science Fund (K.K.). E.V. was supported by a European Molecular Biology Organization long-term postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

K.K. and B.J.D. designed the experiments and performed the data analysis. K.K. performed most behavioural experiments. B.J.D. wrote the manuscript together with K.K. E.V. generated the DopR1 and DopR2 mutants, and A.K. generated the Or47b and Gr68a mutants. S.K. and J.Y.Y. performed the antibody stainings.

Corresponding authors

Correspondence to Krystyna Keleman or Barry J. Dickson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-3 and Supplementary Tables 1-17. (PDF 710 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keleman, K., Vrontou, E., Krüttner, S. et al. Dopamine neurons modulate pheromone responses in Drosophila courtship learning. Nature 489, 145–149 (2012). https://doi.org/10.1038/nature11345

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11345

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing