Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electronic read-out of a single nuclear spin using a molecular spin transistor

Abstract

Quantum control of individual spins in condensed-matter devices is an emerging field with a wide range of applications, from nanospintronics1,2 to quantum computing3. The electron, possessing spin and orbital degrees of freedom, is conventionally used as the carrier of quantum information in proposed devices4,5,6,7,8,9. However, electrons couple strongly to the environment, and so have very short relaxation and coherence times. It is therefore extremely difficult to achieve quantum coherence and stable entanglement of electron spins. Alternative concepts propose nuclear spins as the building blocks for quantum computing10, because such spins are extremely well isolated from the environment and less prone to decoherence. However, weak coupling comes at a price: it remains challenging to address and manipulate individual nuclear spins11,12,13,14. Here we show that the nuclear spin of an individual metal atom embedded in a single-molecule magnet can be read out electronically. The observed long lifetimes (tens of seconds) and relaxation characteristics of nuclear spin at the single-atom scale open the way to a completely new world of devices in which quantum logic may be implemented.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Geometry of the molecular spin transistor and magnetization reversal processes.
Figure 2: Conductance characteristics and electronic read-out procedure.
Figure 3: Transition matrix of the QTM events as a function of the waiting time.
Figure 4: Spin-flip dynamics and nuclear spin-state occupancy of the Tb 3+ nuclear spin states.

References

  1. Awschalom, D. D., Loss, D. & Samarth, N. Semiconductor Spintronics and Quantum Computation (Springer, 2002)

    Book  Google Scholar 

  2. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)

    ADS  CAS  Article  Google Scholar 

  3. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000)

    MATH  Google Scholar 

  4. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    ADS  CAS  Article  Google Scholar 

  5. Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999)

    ADS  CAS  Article  Google Scholar 

  6. Eble, B. et al. Hole–nuclear spin interaction in quantum dots. Phys. Rev. Lett. 102, 1–4 (2009)

    Article  Google Scholar 

  7. Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 1–4 (2004)

    Article  Google Scholar 

  8. Vrijen, R. et al. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A. 62, 1–10 (2000)

    Article  Google Scholar 

  9. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001)

    ADS  CAS  Article  Google Scholar 

  10. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    ADS  CAS  Article  Google Scholar 

  11. Chuang, I. L., Gershenfeld, N. & Kubinec, M. Experimental implementation of fast quantum searching. Nature 393, 143–146 (1998)

    ADS  CAS  Article  Google Scholar 

  12. Chuang, I. L., Vandersypen, L. M. K., Zhou, X., Leung, D. W. & Lloyd, S. Experimental realization of a quantum algorithm. Phys. Rev. Lett. 80, 3408–3411 (1998)

    ADS  CAS  Article  Google Scholar 

  13. DiVincenzo, D. P. Two-bit gates are universal for quantum computation. Phys. Rev. A. 51, 1015–1022 (1995)

    ADS  CAS  Article  Google Scholar 

  14. Berman, G. P., Doolen, G. D., Hammel, P. C. & Tsifrinovich, V. I. Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy. Phys. Rev. B 61, 14694–14699 (2000)

    ADS  CAS  Article  Google Scholar 

  15. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010)

    ADS  CAS  Article  Google Scholar 

  16. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008)

    ADS  CAS  Article  Google Scholar 

  17. Friedman, J. R., Sarachik, M. P., Tejada, J. & Ziolo, R. Macroscopic measurement of resonant magnetization tunnelling in high-spin molecules. Phys. Rev. Lett. 76, 3830–3833 (1996)

    ADS  CAS  Article  Google Scholar 

  18. Thomas, L. et al. Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383, 145–147 (1996)

    ADS  CAS  Article  Google Scholar 

  19. Wernsdorfer, W. & Sessoli, R. Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133–135 (1999)

    ADS  CAS  Article  Google Scholar 

  20. Ardavan, A. et al. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 1–4 (2007)

    Article  Google Scholar 

  21. Bertaina, S. et al. Quantum oscillations in a molecular magnet. Nature 453, 203–206 (2008)

    ADS  CAS  Article  Google Scholar 

  22. Komeda, T. et al. Observation and electric current control of a local spin in a single-molecule magnet. Nature Commun. 2, 217 (2011)

    Article  Google Scholar 

  23. Otte, A. F. et al. The role of magnetic anisotropy in the Kondo effect. Nature Phys. 4, 847–850 (2008)

    ADS  CAS  Article  Google Scholar 

  24. Heersche, H. B. et al. Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 96, 206801 (2006)

    ADS  CAS  Article  Google Scholar 

  25. Zyazin, A. S. et al. Electric field controlled magnetic anisotropy in a single molecule. Nano Lett. 10, 3307–3311 (2010)

    ADS  CAS  Article  Google Scholar 

  26. Urdampilleta, M., Cleuziou, J.-P., Klyatskaya, S., Ruben, M. & Wernsdorfer, W. Supramolecular spin valves. Nature Mater. 10, 502–506 (2011)

    ADS  CAS  Article  Google Scholar 

  27. Park, H., Lim, A. K. L., Alivisatos, A. P., Park, J. & McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999)

    ADS  CAS  Article  Google Scholar 

  28. Stepanow, S. et al. Spin and orbital magnetic moment anisotropies of monodispersed bis(phthalocyaninato)terbium on a copper surface. Supp. Inf. J. Am. Chem. Soc. 132, 11900–11901 (2010)

    CAS  Article  Google Scholar 

  29. Ishikawa, N., Sugita, M. & Wernsdorfer, W. Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. Angew. Chem. Int. Ed. 44, 2931–2935 (2005)

    CAS  Article  Google Scholar 

  30. Abragam, A. The Principles of Nuclear Magnetism (Oxford Univ. Press, 1994)

    Google Scholar 

  31. Leuenberger, M. N. & Loss, D. The Grover algorithm with large nuclear spins in semiconductors. Phys. Rev. B 68, 165317 (2003)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank E. Eyraud, D. Lepoittevin, L. Cagnon, R. Haettel, C. Hoarau, V. Reita and P. Rodière for technical contributions and discussions. We thank T. Fournier, T. Crozes, B. Fernandez, S. Dufresnes and G. Julie for lithography development; E. Bonet, C. Thirion and R. Piquerel for help with software development and M. Urdampilleta, S. Thiele, N. Roch, A. Varlet and A. Ralko for discussions. Samples were fabricated in the Nanofab facility of the Néel Institute. This work is partially supported by the French National Research Agency National Programme in Nanosciences and Nanotechnologies (ANR-PNANO) project MolNanoSpin, number ANR-08-NANO-002; European Research Council Advanced Grant MolNanoSpin, number 226558; ICT-2007.8.0 Future Emerging Technologies Open, Quantum Information Processing Specific Targeted Research Project number 211284 MolSpinQIP; the German Research Foundation programme TRR 88 ‘3Met’; Cible 2009; and the Nanosciences Foundation of Grenoble.

Author information

Authors and Affiliations

Authors

Contributions

R.V., W.W. and F.B. designed, conducted and analysed the experiments; S.K. and M.R. designed, synthesized and characterized the molecule; R.V., M.R., W.W., and F.B. co-wrote the paper.

Corresponding authors

Correspondence to Mario Ruben or Franck Balestro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text 1-7, Supplementary Figures 1-7 and additional references. (PDF 2550 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vincent, R., Klyatskaya, S., Ruben, M. et al. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012). https://doi.org/10.1038/nature11341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11341

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing