Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gut microbiota composition correlates with diet and health in the elderly


Alterations in intestinal microbiota composition are associated with several chronic conditions, including obesity and inflammatory diseases. The microbiota of older people displays greater inter-individual variation than that of younger adults. Here we show that the faecal microbiota composition from 178 elderly subjects formed groups, correlating with residence location in the community, day-hospital, rehabilitation or in long-term residential care. However, clustering of subjects by diet separated them by the same residence location and microbiota groupings. The separation of microbiota composition significantly correlated with measures of frailty, co-morbidity, nutritional status, markers of inflammation and with metabolites in faecal water. The individual microbiota of people in long-stay care was significantly less diverse than that of community dwellers. Loss of community-associated microbiota correlated with increased frailty. Collectively, the data support a relationship between diet, microbiota and health status, and indicate a role for diet-driven microbiota alterations in varying rates of health decline upon ageing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Microbiota analysis separates elderly subjects based upon where they live in the community.
Figure 2: Dietary patterns in community location correlate with separations based on microbiota composition.
Figure 3: PLS-DA plots of 1 H NMR spectra of faecal water from community, long-stay and rehabilitation subjects.
Figure 4: Transition in microbiota composition across residence location is mirrored by changes in health indices.


  1. 1

    O’Toole, P. W. & Claesson, M. J. Gut microbiota: changes throughout the lifespan from infancy to elderly. Int. Dairy J. 20, 281–291 (2010)

    Article  Google Scholar 

  2. 2

    Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010)

    CAS  Article  Google Scholar 

  4. 4

    Kassinen, A. et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133, 24–33 (2007)

    CAS  Article  Google Scholar 

  5. 5

    Jeffery, I. B. et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61, 997–1006 (2012)

    Article  Google Scholar 

  6. 6

    Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Rajilić-Stojanović, M. et al. Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ. Microbiol. 11, 1736–1751 (2009)

    Article  Google Scholar 

  8. 8

    Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl Acad. Sci. USA 108 (Suppl 1). 4586–4591 (2011)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Biagi, E. et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5, e10667 (2010)

    ADS  Article  Google Scholar 

  10. 10

    Franceschi, C. et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann. NY Acad. Sci. 908, 244–254 (2000)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Garrett, W. S., Gordon, J. I. & Glimcher, L. H. Homeostasis and inflammation in the intestine. Cell 140, 859–870 (2010)

    CAS  Article  Google Scholar 

  12. 12

    Guigoz, Y., Dore, J. & Schiffrin, E. J. The inflammatory status of old age can be nurtured from the intestinal environment. Curr. Opin. Clin. Nutr. Metab. Care 11, 13–20 (2008)

    Article  Google Scholar 

  13. 13

    van Tongeren, S. P., Slaets, J. P., Harmsen, H. J. & Welling, G. W. Fecal microbiota composition and frailty. Appl. Environ. Microbiol. 71, 6438–6442 (2005)

    CAS  Article  Google Scholar 

  14. 14

    Lovat, L. B. Age related changes in gut physiology and nutritional status. Gut 38, 306–309 (1996)

    CAS  Article  Google Scholar 

  15. 15

    Hildebrandt, M. A. et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137, 1716–1724 (2009)

    CAS  Article  Google Scholar 

  16. 16

    Mai, V., McCrary, Q. M., Sinha, R. & Glei, M. Associations between dietary habits and body mass index with gut microbiota composition and fecal water genotoxicity: an observational study in African American and Caucasian American volunteers. Nutr. J. 8, 49 (2009)

    Article  Google Scholar 

  17. 17

    Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011)

    CAS  ADS  Article  Google Scholar 

  18. 18

    De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010)

    ADS  Article  Google Scholar 

  19. 19

    Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009)

  20. 20

    Faith, J. J., McNulty, N. P., Rey, F. E. & Gordon, J. I. Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science 333, 101–104 (2011)

    CAS  ADS  Article  Google Scholar 

  21. 21

    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005)

    CAS  Article  Google Scholar 

  23. 23

    Drescher, L. S., Thiele, S. & Mensink, G. B. A new index to measure healthy food diversity better reflects a healthy diet than traditional measures. J. Nutr. 137, 647–651 (2007)

    CAS  Article  Google Scholar 

  24. 24

    Jansson, J. et al. Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS ONE 4, e6386 (2009)

    ADS  Article  Google Scholar 

  25. 25

    Pryde, S. E., Duncan, S. H., Hold, G. L., Stewart, C. S. & Flint, H. J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217, 133–139 (2002)

    CAS  Article  Google Scholar 

  26. 26

    de Groot, V., Beckerman, H., Lankhorst, G. J. & Bouter, L. M. How to measure comorbidity. a critical review of available methods. J. Clin. Epidemiol. 56, 221–229 (2003)

    Article  Google Scholar 

  27. 27

    Mahoney, F. I. & Barthel, D. W. Functional evaluation: the Barthel index. Md. State Med. J. 14, 61–65 (1965)

    CAS  PubMed  Google Scholar 

  28. 28

    Kidd, D. et al. The functional independence measure: a comparative validity and reliability study. Disabil. Rehabil. 17, 10–14 (1995)

    CAS  Article  Google Scholar 

  29. 29

    Folstein, M. F., Folstein, S. E. & McHugh, P. R. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975)

    CAS  Article  Google Scholar 

  30. 30

    Bauer, J. M., Kaiser, M. J., Anthony, P., Guigoz, Y. & Sieber, C. C. The mini nutritional assessment–its history, today’s practice, and future perspectives. Nutr. Clin. Pract. 23, 388–396 (2008)

    Article  Google Scholar 

  31. 31

    Cruz-Jentoft, A. J. et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39, 412–423 (2010)

    Article  Google Scholar 

  32. 32

    Nyamundanda, G., Brennan, L. & Gormley, I. C. Probabilistic principal component analysis for metabolomic data. BMC Bioinformatics 11, 571 (2010)

    Article  Google Scholar 

  33. 33

    Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011)

    CAS  ADS  Article  Google Scholar 

  34. 34

    Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011)

    CAS  Article  Google Scholar 

  35. 35

    European Commission . Population structure and ageing (2011)

    Google Scholar 

  36. 36

    Kinsella, K. & He, W. An Aging World: 2008 (US Government Printing Office, 2009)

    Google Scholar 

  37. 37

    Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011)

    CAS  Article  Google Scholar 

  38. 38

    Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230 (2011)

    CAS  Article  Google Scholar 

  39. 39

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336 (2010)

    CAS  Article  Google Scholar 

  40. 40

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007)

    CAS  Article  Google Scholar 

  41. 41

    O’Sullivan, A., Gibney, M. J. & Brennan, L. Dietary intake patterns are reflected in metabolomic profiles: potential role in dietary assessment studies. Am. J. Clin. Nutr. 93, 314–321 (2011)

    Article  Google Scholar 

  42. 42

    Harrington, J. et al. Sociodemographic, health and lifestyle predictors of poor diets. Public Health Nutr. 14, 2166–2175 (2011)

    Article  Google Scholar 

  43. 43

    McCance, R. A. & Widdowson, E. M. The composition of foods 6th edn (Royal Soc. Chemistry, 2002)

    Google Scholar 

  44. 44

    Claesson, M. J. et al. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE 4, e6669 (2009)

    ADS  Article  Google Scholar 

  45. 45

    Lilburn, T. G. & Garrity, G. M. Exploring prokaryotic taxonomy. Int. J. Syst. Evol. Microbiol. 54, 7–13 (2004)

    Article  Google Scholar 

  46. 46

    Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010)

    CAS  Article  Google Scholar 

  47. 47

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010)

    ADS  Article  Google Scholar 

  48. 48

    Hamady, M., Lozupone, C. & Knight, R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 4, 17–27 (2010)

    CAS  Article  Google Scholar 

  49. 49

    Namiki, T., Hachiya, T., Tanaka, H. & Sakakibara, Y. in ACM Conference on Bioinformatics Computational Biology and Biomedicine (Association for Computing Machinery, 2011)

    Google Scholar 

  50. 50

    Chevreux, B. et al. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 14, 1147–1159 (2004)

    CAS  Article  Google Scholar 

  51. 51

    Noguchi, H., Park, J. & Takagi, T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 34, 5623–5630 (2006)

    CAS  Article  Google Scholar 

  52. 52

    Koenker, R. & Basset, G. Regression quantiles. Econometrica 46, 33–50 (1978)

    MathSciNet  Article  Google Scholar 

  53. 53

    Feng, X. D., He, X. M. & Hu, J. H. Wild bootstrap for quantile regression. Biometrika 98, 995–999 (2011)

    MathSciNet  Article  Google Scholar 

  54. 54

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  55. 55

    Dabney, A., Storey, J. D. & Warnes, G. R. qvalue: Q-value estimation for false discovery rate control; R package version 1.24.20. (2010)

Download references


This work was supported by the Government of Ireland National Development Plan by way of a Department of Agriculture Food and Marine, and Health Research Board FHRI award to the ELDERMET project, as well as by a Science Foundation Ireland award to the Alimentary Pharmabiotic Centre. M.J.C. is funded by a fellowship from the Health Research Board of Ireland. We thank K. O’Donovan and P. Egan for clinical assistance, staff in Cork City and County hospitals for facilitating subject recruitment, S. Wong and B. Clayton for supercomputer access.

Author information




All authors are members of the ELDERMET consortium ( P.W.O.T., E.M.O.C., S.Cu.1 and R.P.R. managed the project; D.v.S., G.F.F., C.S., J.R.M., F.S., C.H., R.P.R. and PWOT designed the analyses; M.J.C., I.B.J., S.Co.3, E.M.O.C., H.M.B.H., M.C., B.L., O.O.S., A.P.F., S.E.P., M.W. and L.B. performed the analyses; J.D. performed DNA extraction and PCR; M.W. and L.B. performed NMR metabolomics; M.O.C., N.H., K.O.C. and D.O.M. performed clinical analyses; M.J.C., I.B.J., S.Co.3, E.M.O.C., L.B., J.R.M., A.P.F., R.P.R., C.H., F.S. and P.W.O.T. wrote the manuscript.

Corresponding author

Correspondence to Paul W. O’Toole.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Amplicon sequence data, shotgun sequence data, contigs, genes and annotations have been deposited inMG-RAST under the Project ID 154 (

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1–17, Supplementary Tables 1–6 and 8–9 (see separate fie for Supplementary Table 7), Supplementary Notes and Supplementary References. (PDF 2839 kb)

Supplementary Table 7

This table contains the clinical and dietary metadata. (XLSX 30 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Claesson, M., Jeffery, I., Conde, S. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing