Article | Published:

Parity–time synthetic photonic lattices

Nature volume 488, pages 167171 (09 August 2012) | Download Citation

Subjects

Abstract

The development of new artificial structures and materials is today one of the major research challenges in optics. In most studies so far, the design of such structures has been based on the judicious manipulation of their refractive index properties. Recently, the prospect of simultaneously using gain and loss was suggested as a new way of achieving optical behaviour that is at present unattainable with standard arrangements. What facilitated these quests is the recently developed notion of ‘parity–time symmetry’ in optical systems, which allows a controlled interplay between gain and loss. Here we report the experimental observation of light transport in large-scale temporal lattices that are parity–time symmetric. In addition, we demonstrate that periodic structures respecting this symmetry can act as unidirectional invisible media when operated near their exceptional points. Our experimental results represent a step in the application of concepts from parity–time symmetry to a new generation of multifunctional optical devices and networks.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997)

  2. 2.

    , , & St J. Photonic band gap guidance in optical fibers. Science 282, 1476–1478 (1998)

  3. 3.

    , & Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

  4. 4.

    Spaser action, loss compensation, and stability in plasmonic systems with gain. Phys. Rev. Lett. 106, 156802 (2011)

  5. 5.

    & Surface plasmon–polariton amplifiers and lasers. Nature Photon. 6, 16–24 (2011)

  6. 6.

    et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009)

  7. 7.

    Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

  8. 8.

    & Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

  9. 9.

    Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)

  10. 10.

    & Systematic search for PT-symmetric potentials with real energy spectra. J. Phys. Math. Gen. 33, 7165–7180 (2000)

  11. 11.

    , & Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)

  12. 12.

    Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205–214 (2002)

  13. 13.

    Optical lattices with PT symmetry are not transparent. J. Phys. A 41, 244007 (2008)

  14. 14.

    Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT invariant potential. Phys. Lett. A 282, 343–348 (2001)

  15. 15.

    , & Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)

  16. 16.

    , , & Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007)

  17. 17.

    , & PT-symmetric optical lattices. Phys. Rev. A 81, 063807 (2010)

  18. 18.

    et al. Observation of parity–time symmetry in optics. Nature Phys. 6, 192–195 (2010)

  19. 19.

    et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

  20. 20.

    , , , & Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A 84, 040101 (2011)

  21. 21.

    et al. PT symmetry and spontaneous symmetry breaking in a microwave billiard. Phys. Rev. Lett. 108, 024101 (2012)

  22. 22.

    , , & Unidirectional nonlinear PT-symmetric optical structures. Phys. Rev. A 82 043803 (2010) CrossRef

  23. 23.

    , & PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011)

  24. 24.

    , & Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008)

  25. 25.

    , & Nonlinearly PT-symmetric systems: spontaneous symmetry breaking and transmission resonances. Phys. Rev. A 84, 012123 (2011)

  26. 26.

    Dmitriev, S. V., Malomed, B. A. & Kivshar, Y. S. Wave scattering on a domain wall in a chain of PT-symmetric couplers. Phys. Rev. A 85, 033825 (2012)

  27. 27.

    & Scattering from a waveguide by cycling a non-Hermitian degeneracy. Phys. Rev. A. 85, 031804(R) (2012)

  28. 28.

    Optical physics: broken symmetry makes light work. Nature Phys. 6, 166–167 (2010)

  29. 29.

    PT-symmetric laser absorber. Phys. Rev. A 82, 031801(R) (2010)

  30. 30.

    , , , & &. Rotter, S. Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012)

  31. 31.

    LiKamWa, P. & Christodoulides, D. N. Large area single-mode parity–time-symmetric laser amplifiers. Opt. Lett. 37, 764–766 (2012)

  32. 32.

    et al. Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502 (2010)

  33. 33.

    et al. Photon propagation in a discrete fiber network: an interplay of coherence and losses. Phys. Rev. Lett. 107, 233902 (2011)

  34. 34.

    , , & PT optical lattices and universality in beam dynamics. Phys. Rev. A. 82, 010103(R) (2010)

  35. 35.

    & PT-symmetric sinusoidal optical lattices at the symmetry-breaking threshold. Phys. Rev. A 84, 013818 (2011)

  36. 36.

    & Degrees and signatures of broken PT symmetry in nonuniform lattices. Phys. Rev. A 83, 050102 (2011)

  37. 37.

    Bloch oscillations in complex crystals with PT symmetry. Phys. Rev. Lett. 103, 123601 (2009)

  38. 38.

    , , , & Optical Bloch oscillations in temperature tuned waveguide arrays. Phys. Rev. Lett. 83, 4752–4755 (1999)

  39. 39.

    , , , & Experimental observation of linear and nonlinear optical Bloch oscillations. Phys. Rev. Lett. 83, 4756–4759 (1999)

  40. 40.

    , , & PT-symmetry in honeycomb photonic lattices. Phys. Rev. A 84, 021806 (2011)

  41. 41.

    Superluminal (but causal) propagation of wave-packets in transparent media with inverted atomic populations. Phys. Rev. A 48, R34–R37 (1993)

  42. 42.

    , & Gain-assisted superluminal light propagation. Nature 406, 277–279 (2000)

  43. 43.

    , , , & Nonreciprocal waveguide Bragg gratings. Opt. Express 13, 3068–3078 (2005)

  44. 44.

    et al. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)

  45. 45.

    et al. Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012)

Download references

Acknowledgements

We acknowledge financial support from DFG Forschergruppe 760, the Cluster of Excellence Engineering of Advanced Materials, SAOT and the German-Israeli Foundation. This work was also supported by NSF grant ECCS-1128520 and by AFOSR grant FA95501210148. Moreover, we thank J. Näger for technical support.

Author information

Affiliations

  1. Institute of Optics, Information and Photonics, University of Erlangen-Nürnberg, Staudtstraße 7/B2, 91058 Erlangen, Germany

    • Alois Regensburger
    • , Christoph Bersch
    •  & Ulf Peschel
  2. Max Planck Institute for the Science of Light, Günther-Scharowsky-Straße 1, Bau 24, 91058 Erlangen, Germany

    • Alois Regensburger
    • , Christoph Bersch
    •  & Georgy Onishchukov
  3. CREOL, College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816–2700, USA

    • Mohammad-Ali Miri
    •  & Demetrios N. Christodoulides

Authors

  1. Search for Alois Regensburger in:

  2. Search for Christoph Bersch in:

  3. Search for Mohammad-Ali Miri in:

  4. Search for Georgy Onishchukov in:

  5. Search for Demetrios N. Christodoulides in:

  6. Search for Ulf Peschel in:

Contributions

All authors contributed extensively to the work presented in this paper.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Demetrios N. Christodoulides or Ulf Peschel.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Methods and Data (see contents list for more details), Supplementary Figures 1-9 and additional references.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature11298

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.