Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Parity–time synthetic photonic lattices

Abstract

The development of new artificial structures and materials is today one of the major research challenges in optics. In most studies so far, the design of such structures has been based on the judicious manipulation of their refractive index properties. Recently, the prospect of simultaneously using gain and loss was suggested as a new way of achieving optical behaviour that is at present unattainable with standard arrangements. What facilitated these quests is the recently developed notion of ‘parity–time symmetry’ in optical systems, which allows a controlled interplay between gain and loss. Here we report the experimental observation of light transport in large-scale temporal lattices that are parity–time symmetric. In addition, we demonstrate that periodic structures respecting this symmetry can act as unidirectional invisible media when operated near their exceptional points. Our experimental results represent a step in the application of concepts from parity–time symmetry to a new generation of multifunctional optical devices and networks.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: PT-symmetric fibre networks.
Figure 2: Band structure and measured single-pulse evolution in the PT synthetic network.
Figure 3: Exploring the PT threshold of a lattice using a two-parameter scan.
Figure 4: Bloch oscillations (experiment) and superluminal energy transport (simulation).
Figure 5: Experimentally observed unidirectional invisibility of PT-symmetric Bragg scatterers.

References

  1. 1

    Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Knight, J. C., Broeng, J., Birks, T. A. & Russell, P. St J. Photonic band gap guidance in optical fibers. Science 282, 1476–1478 (1998)

    CAS  Article  Google Scholar 

  3. 3

    Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Stockman, M. Spaser action, loss compensation, and stability in plasmonic systems with gain. Phys. Rev. Lett. 106, 156802 (2011)

    ADS  Article  Google Scholar 

  5. 5

    Berini, P. & De Leon, I. Surface plasmon–polariton amplifiers and lasers. Nature Photon. 6, 16–24 (2011)

    ADS  Article  Google Scholar 

  6. 6

    Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  9. 9

    Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10

    Lévai, G. & Znojil, M. Systematic search for PT-symmetric potentials with real energy spectra. J. Phys. Math. Gen. 33, 7165–7180 (2000)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11

    Bender, C. M., Brody, D. C. & Jones, H. F. Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)

    MathSciNet  Article  Google Scholar 

  12. 12

    Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205–214 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13

    Berry, M. V. Optical lattices with PT symmetry are not transparent. J. Phys. A 41, 244007 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14

    Ahmed, Z. Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT invariant potential. Phys. Lett. A 282, 343–348 (2001)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  15. 15

    Makris, K. G., El-Ganainy, R. & Christodoulides, D. N. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)

    ADS  CAS  Article  Google Scholar 

  16. 16

    El-Ganainy, R., Makris, K. G., Christodoulides, D. N. & Musslimani, Z. H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Makris, K. G., El-Ganainy, R. & Christodoulides, D. N. PT-symmetric optical lattices. Phys. Rev. A 81, 063807 (2010)

    ADS  Article  Google Scholar 

  18. 18

    Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nature Phys. 6, 192–195 (2010)

    ADS  Article  Google Scholar 

  19. 19

    Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Schindler, J., Li, A., Zheng, M. C., Ellis, F. M. & Kottos, T. Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A 84, 040101 (2011)

    ADS  Article  Google Scholar 

  21. 21

    Bittner, S. et al. PT symmetry and spontaneous symmetry breaking in a microwave billiard. Phys. Rev. Lett. 108, 024101 (2012)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Ramezani, H., Kottos, T., El-Ganainy, R. & Christodoulides, D. Unidirectional nonlinear PT-symmetric optical structures. Phys. Rev. A 82 043803 (2010) CrossRef

    ADS  Article  Google Scholar 

  23. 23

    Chong, Y., Ge, L. & Stone, A. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Klaiman, S., Guenther, U. & Moiseyev, N. Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  25. 25

    Miroshnichenko, A. E., Malomed, B. A. & Kivshar, Y. S. Nonlinearly PT-symmetric systems: spontaneous symmetry breaking and transmission resonances. Phys. Rev. A 84, 012123 (2011)

    ADS  Article  Google Scholar 

  26. 26

    Suchkov, S. V. Dmitriev, S. V., Malomed, B. A. & Kivshar, Y. S. Wave scattering on a domain wall in a chain of PT-symmetric couplers. Phys. Rev. A 85, 033825 (2012)

    ADS  Article  Google Scholar 

  27. 27

    Uzdin, R. & Moiseyev, N. Scattering from a waveguide by cycling a non-Hermitian degeneracy. Phys. Rev. A. 85, 031804(R) (2012)

    ADS  Article  Google Scholar 

  28. 28

    Kottos, T. Optical physics: broken symmetry makes light work. Nature Phys. 6, 166–167 (2010)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Longhi, S. PT-symmetric laser absorber. Phys. Rev. A 82, 031801(R) (2010)

    ADS  Article  Google Scholar 

  30. 30

    Liertzer, M., Ge, L., Cerjan, A., Stone, A. D. & Türeci, H. E. &. Rotter, S. Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Miri, M.-A. LiKamWa, P. & Christodoulides, D. N. Large area single-mode parity–time-symmetric laser amplifiers. Opt. Lett. 37, 764–766 (2012)

    ADS  Article  Google Scholar 

  32. 32

    Schreiber, A. et al. Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502 (2010)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Regensburger, A. et al. Photon propagation in a discrete fiber network: an interplay of coherence and losses. Phys. Rev. Lett. 107, 233902 (2011)

    ADS  Article  Google Scholar 

  34. 34

    Zheng, M. C., Christodoulides, D. N., Fleischmann, R. & Kottos, T. PT optical lattices and universality in beam dynamics. Phys. Rev. A. 82, 010103(R) (2010)

    ADS  Article  Google Scholar 

  35. 35

    Graefe, E. M. & Jones, H. F. PT-symmetric sinusoidal optical lattices at the symmetry-breaking threshold. Phys. Rev. A 84, 013818 (2011)

    ADS  Article  Google Scholar 

  36. 36

    Scott, D. D. & Joglekar, Y. N. Degrees and signatures of broken PT symmetry in nonuniform lattices. Phys. Rev. A 83, 050102 (2011)

    ADS  Article  Google Scholar 

  37. 37

    Longhi, S. Bloch oscillations in complex crystals with PT symmetry. Phys. Rev. Lett. 103, 123601 (2009)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Pertsch, T., Dannberg, P., Elflein, W., Bräuer, A. & Lederer, F. Optical Bloch oscillations in temperature tuned waveguide arrays. Phys. Rev. Lett. 83, 4752–4755 (1999)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Morandotti, R., Peschel, U., Aitchison, J., Eisenberg, H. & Silberberg, Y. Experimental observation of linear and nonlinear optical Bloch oscillations. Phys. Rev. Lett. 83, 4756–4759 (1999)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Szameit, A., Rechtsman, M. C., Bahat-Treidel, O. & Segev, M. PT-symmetry in honeycomb photonic lattices. Phys. Rev. A 84, 021806 (2011)

    ADS  Article  Google Scholar 

  41. 41

    Chiao, R. Superluminal (but causal) propagation of wave-packets in transparent media with inverted atomic populations. Phys. Rev. A 48, R34–R37 (1993)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Wang, L. J., Kuzmich, A. & Dogariu, A. Gain-assisted superluminal light propagation. Nature 406, 277–279 (2000)

    ADS  CAS  Article  Google Scholar 

  43. 43

    Kulishov, M., Laniel, J. M., Bélanger, N., Azaña, J. & Plant, D. V. Nonreciprocal waveguide Bragg gratings. Opt. Express 13, 3068–3078 (2005)

    ADS  Article  Google Scholar 

  44. 44

    Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)

    ADS  Article  Google Scholar 

  45. 45

    Sansoni, L. et al. Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from DFG Forschergruppe 760, the Cluster of Excellence Engineering of Advanced Materials, SAOT and the German-Israeli Foundation. This work was also supported by NSF grant ECCS-1128520 and by AFOSR grant FA95501210148. Moreover, we thank J. Näger for technical support.

Author information

Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding authors

Correspondence to Demetrios N. Christodoulides or Ulf Peschel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Data (see contents list for more details), Supplementary Figures 1-9 and additional references. (PDF 6358 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Regensburger, A., Bersch, C., Miri, MA. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012). https://doi.org/10.1038/nature11298

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing