Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solid–liquid iron partitioning in Earth’s deep mantle

Abstract

Melting processes in the deep mantle have important implications for the origin of the deep-derived plumes believed to feed hotspot volcanoes such as those in Hawaii1. They also provide insight into how the mantle has evolved, geochemically and dynamically, since the formation of Earth2. Melt production in the shallow mantle is quite well understood, but deeper melting near the core–mantle boundary remains controversial. Modelling the dynamic behaviour of deep, partially molten mantle requires knowledge of the density contrast between solid and melt fractions. Although both positive and negative melt buoyancies can produce major chemical segregation between different geochemical reservoirs, each type of buoyancy yields drastically different geodynamical models. Ascent or descent of liquids in a partially molten deep mantle should contribute to surface volcanism or production of a deep magma ocean, respectively. We investigated phase relations in a partially molten chondritic-type material under deep-mantle conditions. Here we show that the iron partition coefficient between aluminium-bearing (Mg,Fe)SiO3 perovskite and liquid is between 0.45 and 0.6, so iron is not as incompatible with deep-mantle minerals as has been reported previously3. Calculated solid and melt density contrasts suggest that melt generated at the core–mantle boundary should be buoyant, and hence should segregate upwards. In the framework of the magma oceans induced by large meteoritic impacts on early Earth, our results imply that the magma crystallization should push the liquids towards the surface and form a deep solid residue depleted in incompatible elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lay, T., Garnero, E. J. & Williams, Q. Partial melting in a thermo-chemical boundary layer at the base of the mantle. Phys. Earth Planet. Inter. 146, 441–467 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Solomatov, V. S. in Origin of the Earth and Moon (eds Canup, R. M. & Righter, K. ) 323–338 (Univ. Arizona Press, 2000)

    Google Scholar 

  3. Nomura, R. et al. Spin crossover and iron-rich silicate melt in the Earth's deep mantle. Nature 473, 199–202 (2011)

    Article  ADS  CAS  Google Scholar 

  4. Hernlund, J. W. & Jellinek, A. M. Dynamics and structure of a stirred partially molten ultralow-velocity zone. Earth Planet. Sci. Lett. 296, 1–8 (2010)

    Article  ADS  CAS  Google Scholar 

  5. Rost, S., Garnero, E. J., Williams, Q. & Manga, M. Seismological constraints on a possible plume root at the core–mantle boundary. Nature 435, 666–669 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Laporte, D., Toplis, M. J., Seyler, M. & Devidal, J. L. A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contrib. Mineral. Petrol. 146, 463–484 (2004)

    Article  ADS  CAS  Google Scholar 

  7. McNamara, A. K., Garnero, E. J. & Rost, S. Tracking deep mantle reservoirs with ultra-low velocity zones. Earth Planet. Sci. Lett. 299, 1–9 (2010)

    Article  ADS  CAS  Google Scholar 

  8. Buffett, B. A., Garnero, E. J. & Jeanloz, R. Sediments at the top of Earth's core. Science 290, 1338–1342 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Sakai, T. et al. Interaction between iron and post-perovskite at core-mantle boundary and core signature in plume source region. Geophys. Res. Lett. 33, L15317 (2006)

    Article  ADS  Google Scholar 

  10. Andrault, D. et al. Melting curve of the deep mantle applied to properties of early magma ocean and actual core-mantle boundary. Earth Planet. Sci. Lett. 304, 251–259 (2011)

    Article  ADS  CAS  Google Scholar 

  11. Fiquet, G. et al. Melting of peridotite to 140 gigapascals. Science 329, 1516–1518 (2010)

    Article  ADS  CAS  Google Scholar 

  12. Mosenfelder, J. L., Asimow, P. D., Frost, D. J., Rubie, D. C. & Ahrens, T. J. The MgSiO3 system at high pressure: thermodynamic properties of perovskite, postperovskite, and melt from global inversion of shock and static compression data. J. Geophys. Res. 114, B01203 (2009)

    Article  ADS  Google Scholar 

  13. Stixrude, L., de Koker, N., Sun, N., Mookherjee, M. & Karki, B. B. Thermodynamics of silicate liquids in the deep Earth. Earth Planet. Sci. Lett. 278, 226–232 (2009)

    Article  ADS  CAS  Google Scholar 

  14. Funamori, N. & Sato, T. Density contrast between silicate melts and crystals in the deep mantle: an integrated view based on static-compression data. Earth Planet. Sci. Lett. 295, 435–440 (2010)

    Article  ADS  CAS  Google Scholar 

  15. Ito, E., Kubo, A., Katsura, T. & Walter, M. J. Melting experiments of mantle materials under lower mantle conditions with implications for magma ocean differentiation. Phys. Earth Planet. Inter. 143–144, 397–406 (2004)

    Article  ADS  Google Scholar 

  16. Litasov, K. & Ohtani, E. Phase relations and melt compositions in CMAS–pyrolite–H2O system up to 25 GPa. Phys. Earth Planet. Inter. 134, 105–127 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Trønnes, R. G. & Frost, D. J. Peridotite melting and mineral–melt partitioning of major and minor elements at 22–24.5 GPa. Earth Planet. Sci. Lett. 197, 117–131 (2002)

    Article  ADS  Google Scholar 

  18. Zhang, J. & Herzberg, C. Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa. J. Geophys. Res. 99, 17729–17742 (1994)

    Article  ADS  Google Scholar 

  19. Ohtani, E., Moriwaki, K., Kato, T. & Onuma, K. Melting and crystal–liquid partitioning in the system Mg2SiO4–Fe2SiO4 to 25 GPa. Phys. Earth Planet. Inter. 107, 75–82 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Walter, M. J., Nakamura, E., Trønnes, R. G. & Frost, D. J. Experimental constraints on crystallization differentiation in a deep magma ocean. Geochim. Cosmochim. Acta 68, 4267–4284 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Wood, B. J. & Rubie, D. C. The effect of alumina on phase transformations at the 660-kilometer discontinuity from Fe–Mg partitioning experiments. Science 273, 1522–1524 (1996)

    Article  ADS  CAS  Google Scholar 

  22. Auzende, A.-L. et al. Element partitioning between magnesium silicate perovskite and ferropericlase: new insights into bulk lower-mantle geochemistry. Earth Planet. Sci. Lett. 269, 164–174 (2008)

    Article  ADS  CAS  Google Scholar 

  23. Kobayashi, Y. et al. Fe–Mg partitioning between (Mg, Fe)SiO3 post-perovskite, perovskite and magnesiowüstite in the Earth’s lower mantle. Geophys. Res. Lett. 32, L19301 (2005)

    ADS  Google Scholar 

  24. Andrault, D. et al. Experimental evidence for perovskite and post-perovskite coexistence throughout the whole D" region. Earth Planet. Sci. Lett. 293, 90–96 (2010)

    Article  ADS  CAS  Google Scholar 

  25. Murakami, M., Hirose, K., Sata, N. & Ohishi, Y. Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophys. Res. Lett. 32, L03304 (2005)

    Article  ADS  Google Scholar 

  26. Davaille, A. A simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402, 756–760 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth's mantle. Nature 450, 866–869 (2007)

    Article  ADS  CAS  Google Scholar 

  28. Hirose, K., Shimizu, N., van Westrenen, W. & Fei, Y. Trace element partitioning in Earth's lower mantle and implications for geochemical consequences of partial melting at the core-mantle boundary. Phys. Earth Planet. Inter. 146, 249–260 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Corgne, A., Liebske, C., Wood, B. J., Rubie, D. C. & Frost, D. J. Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochim. Cosmochim. Acta 69, 485–496 (2005)

    Article  ADS  CAS  Google Scholar 

  30. Liebske, C., Corgne, A., Frost, D. J., Rubie, D. C. & Wood, B. J. Compositional effects on element partitioning between Mg-silicate perovskite and silicate melts. Contrib. Mineral. Petrol. 149, 113–128 (2005)

    Article  ADS  CAS  Google Scholar 

  31. Sata, N., Shen, G., Rivers, M. L. & Sutton, S. R. Pressure–volume equation of state of the high-pressure B2 phase of NaCl. Phys. Rev. B 65, 114114–114117 (2002)

    Article  Google Scholar 

  32. Hammersley, J. Fit2d User Manual (ESRF, 1996)

    Google Scholar 

  33. Larson, A. C. & Von Dreele, R. B. GSAS Manual (Los Alamos National Laboratory, 1988)

    Google Scholar 

  34. Miyajima, N., Fujino, K., Funamori, N., Kondo, T. & Yagi, T. Garnet–perovskite transformation under conditions of the Earth's lower mantle: an analytical transmission electron microscopy study. Phys. Earth Planet. Inter. 116, 117–131 (1999)

    Article  ADS  CAS  Google Scholar 

  35. Petitgirard, S. et al. An in situ approach to study trace element partitioning in the laser heated diamond anvil cell. Rev. Sci. Instrum. 83, 013904 (2012)

    Article  ADS  CAS  Google Scholar 

  36. Manning, C. E., Wilke, M., Schmidt, C. & Cauzid, J. Rutile solubility in albite-H2O and Na2Si3O7-H2O at high temperatures and pressures by in-situ synchrotron radiation micro-XRF. Earth Planet. Sci. Lett. 272, 730–737 (2008)

    Article  ADS  CAS  Google Scholar 

  37. Mayanovic, R. A., Yan, H., Anderson, A. J., Meredith, P. R. & Bassett, W. A. In situ X-ray absorption spectroscopic study of the adsorption of Ni2+ on Fe3O4 nanoparticles in supercritical aqueous fluids. J. Phys. Chem. C 116, 2218–2225 (2012)

    Article  CAS  Google Scholar 

  38. Wilke, M. et al. A confocal set-up for micro-XRF and XAFS experiments using diamond-anvil cells. J. Synchrotron Radiat. 17, 669–675 (2010)

    Article  CAS  Google Scholar 

  39. Sanchez-Valle, C. et al. Dissolution of strontianite at high PT conditions: an in-situ synchrotron X-ray fluorescence study. Am. Mineral. 88, 978–985 (2003)

    Article  ADS  CAS  Google Scholar 

  40. Petitgirard, S. et al. A diamond anvil cell for X-ray fluorescence measurements of trace elements in fluids at high pressure and high temperature. Rev. Sci. Instrum. 80, 033906 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank N. Bolfan-Casanova, M. A. Bouhifd, T. Druitt, T. Hammouda and J.-M. Hénot for help and discussions. This work is supported by the French National Centre for Scientific Research’s National Institute for Earth Sciences and Astronomy, the ESRF and the European C2C programme. This is Laboratory of Excellence ClerVolc contribution no. 26.

Author information

Authors and Affiliations

Authors

Contributions

D.A., S.P., G.L.N., G.G. and M.M. synthesized the sample and took the XRD and XRF measurements at the ID27 beamline. S.P. and G.V. took the XRF measurements at the ID21 beamline. D.A. and J.-L.D. performed the electron-probe micro-analyses at the Laboratoire Magmas et Volcans. D.A., S.P. and G.L.N. performed the data treatment and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Denis Andrault.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary References, Supplementary Tables 1-2 and Supplementary Figures 1-5. (PDF 918 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrault, D., Petitgirard, S., Lo Nigro, G. et al. Solid–liquid iron partitioning in Earth’s deep mantle. Nature 487, 354–357 (2012). https://doi.org/10.1038/nature11294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11294

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing