Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A biophysical signature of network affiliation and sensory processing in mitral cells

Abstract

One defining characteristic of the mammalian brain is its neuronal diversity1. For a given region, substructure, layer or even cell type, variability in neuronal morphology and connectivity persists2,3,4,5. Although it is well known that such cellular properties vary considerably according to neuronal type, the substantial biophysical diversity of neurons of the same morphological class is typically averaged out and ignored. Here we show that the amplitude of hyperpolarization-evoked sag of membrane potential recorded in olfactory bulb mitral cells is an emergent, homotypic property of local networks and sensory information processing. Simultaneous whole-cell recordings from pairs of cells show that the amount of hyperpolarization-evoked sag potential and current (Ih)6 is stereotypic for mitral cells belonging to the same glomerular circuit. This is corroborated by a mosaic, glomerulus-based pattern of expression of the HCN2 (hyperpolarization-activated cyclic nucleotide-gated channel 2) subunit of the Ih channel. Furthermore, inter-glomerular differences in both membrane potential sag and HCN2 protein are diminished when sensory input to glomeruli is genetically and globally altered so that only one type of odorant receptor is universally expressed7. Population diversity in this intrinsic property therefore reflects differential expression between local mitral cell networks processing distinct odour-related information.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Diversity of sag potential amplitude within and between mitral cell networks.
Figure 2: Glomerular expression of HCN2 in wild-type and OMP-IRES-tau-LacZ mice.
Figure 3: Glomerular expression of HCN2 and mitral cell sag in M71 monoclonal mice.
Figure 4: Population diversity reflects local network membership and sensory processing.

References

  1. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000)

    ADS  CAS  Article  Google Scholar 

  2. Brochtrup, A. & Hummel, T. Olfactory map formation in the Drosophila brain: genetic specificity and neuronal variability. Curr. Opin. Neurobiol. 21, 85–92 (2011)

    CAS  Article  Google Scholar 

  3. Reyes, A. et al. Target-cell specific facilitation and depression in neocortical networks. Nature Neurosci. 1, 279–285 (1998)

    CAS  Article  Google Scholar 

  4. Jinno, S. et al. Neuronal diversity in GABAergic long-range projections from the hippocampus. J. Neurosci. 27, 8790–8804 (2007)

    CAS  Article  Google Scholar 

  5. Brown, S. P. & Hestrin, S. Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457, 1133–1136 (2009)

    ADS  CAS  Article  Google Scholar 

  6. Angelo, K. & Margrie, T. W. Population diversity and function of hyperpolarization-activated current in olfactory bulb mitral cells. Scientific Reports 1, 1:50 (2011)

    ADS  Article  Google Scholar 

  7. Fleischmann, A. et al. Mice with a “monoclonal nose”: perturbations in an olfactory map impair odor discrimination. Neuron 60, 1068–1081 (2008)

    CAS  Article  Google Scholar 

  8. Tsiola, A., Hamzei-Sichani, F., Peterlin, Z. & Yuste, R. Quantitative morphologic classification of layer 5 neurons from mouse primary visual cortex. J. Comp. Neurol. 461, 415–428 (2003)

    Article  Google Scholar 

  9. Schulz, D. J., Goaillard, J. M. & Marder, E. Variable channel expression in identified single and electrically coupled neurons in different animals. Nature Neurosci. 9, 356–362 (2006)

    CAS  Article  Google Scholar 

  10. Ermentrout, G. B., Galan, R. F. & Urban, N. N. Reliability, synchrony and noise. Trends Neurosci. 31, 428–434 (2008)

    CAS  Article  Google Scholar 

  11. Marder, E. & Goaillard, J. M. Variability, compensation and homeostasis in neuron and network function. Nature Rev. Neurosci. 7, 563–574 (2006)

    CAS  Article  Google Scholar 

  12. Magee, J. C. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624 (1998)

    CAS  Article  Google Scholar 

  13. Garden, D. L., Dodson, P. D., O'Donnell, C., White, M. D. & Nolan, M. F. Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields. Neuron 60, 875–889 (2008)

    CAS  Article  Google Scholar 

  14. George, M. S., Abbott, L. F. & Siegelbaum, S. A. HCN hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K+ channels. Nature Neurosci. 12, 577–584 (2009)

    CAS  Article  Google Scholar 

  15. Nolan, M. F., Dudman, J. T., Dodson, P. D. & Santoro, B. HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. J. Neurosci. 27, 12440–12451 (2007)

    CAS  Article  Google Scholar 

  16. Lüthi, A. & McCormick, D. A. Periodicity of thalamic synchronized oscillations: the role of Ca2+-mediated upregulation of Ih . Neuron 20, 553–563 (1998)

    Article  Google Scholar 

  17. Giocomo, L. M., Zilli, E. A., Fransen, E. & Hasselmo, M. E. Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315, 1719–1722 (2007)

    ADS  CAS  Article  Google Scholar 

  18. Migliore, M. & Shepherd, G. M. Emerging rules for the distributions of active dendritic conductances. Nature Rev. Neurosci. 3, 362–370 (2002)

    CAS  Article  Google Scholar 

  19. Woolsey, T. A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970)

    CAS  Article  Google Scholar 

  20. Mombaerts, P. Targeting olfaction. Curr. Opin. Neurobiol. 6, 481–486 (1996)

    CAS  Article  Google Scholar 

  21. Schoppa, N. E. & Westbrook, G. L. Glomerulus-specific synchronization of mitral cells in the olfactory bulb. Neuron 31, 639–651 (2001)

    CAS  Article  Google Scholar 

  22. Pimentel, D. O. & Margrie, T. W. Glutamatergic transmission and plasticity between olfactory bulb mitral cells. J. Physiol. 586, 2107–2119 (2008)

    CAS  Article  Google Scholar 

  23. Robinson, R. B. & Siegelbaum, S. A. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu. Rev. Physiol. 65, 453–480 (2003)

    CAS  Article  Google Scholar 

  24. Notomi, T. & Shigemoto, R. Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain. J. Comp. Neurol. 471, 241–276 (2004)

    CAS  Article  Google Scholar 

  25. Santoro, B. et al. Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J. Neurosci. 20, 5264–5275 (2000)

    CAS  Article  Google Scholar 

  26. Cadetti, L. & Belluzzi, O. Hyperpolarisation-activated current in glomerular cells of the rat olfactory bulb. Neuroreport 12, 3117–3120 (2001)

    CAS  Article  Google Scholar 

  27. van Welie, I., van Hooft, J. A. & Wadman, W. J. Homeostatic scaling of neuronal excitability by synaptic modulation of somatic hyperpolarization-activated Ih channels. Proc. Natl Acad. Sci. USA 101, 5123–5128 (2004)

    ADS  CAS  Article  Google Scholar 

  28. Desai, N. S., Rutherford, L. C. & Turrigiano, G. G. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neurosci. 2, 515–520 (1999)

    CAS  Article  Google Scholar 

  29. Padmanabhan, K. & Urban, N. N. Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. Nature Neurosci. 13, 1276–1282 (2010)

    CAS  Article  Google Scholar 

  30. Dhawale, A. K., Hagiwara, A., Bhalla, U. S., Murthy, V. N. & Albeanu, D. F. Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse. Nature Neurosci. 13, 1404–1412 (2010)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Velez-Fort for comments on the manuscript. E.A.R. is a recipient of a Sir Henry Wellcome Fellowship. This project was supported by the Oticon Foundation, the Danish Council for Independent Research and the Lundbeckfondation (K.A.), the Gulbenkian PhD Programme and Fundação para a Ciência e Tecnologia (D.P.), The Wellcome Trust (T.W.M.) and Medical Research Council MC_U1175975156 (B.P. and T.W.M.).

Author information

Authors and Affiliations

Authors

Contributions

K.A. and E.A.R. performed electrophysiological experiments. C.H. and J.H. carried out immunohistochemistry. D.P. performed morphological reconstructions and some initial electrophysiological experiments. B.P. and E.A.R. contributed to data analysis. A.F. generated the transgenic mouse line. K.A. and T.W.M. conceived the project and performed analysis. T.W.M. wrote the paper with input from all other authors.

Corresponding author

Correspondence to Troy W. Margrie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-3, Supplementary Methods and additional references. (PDF 3522 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Angelo, K., Rancz, E., Pimentel, D. et al. A biophysical signature of network affiliation and sensory processing in mitral cells. Nature 488, 375–378 (2012). https://doi.org/10.1038/nature11291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11291

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing