High velocity dispersion in a rare grand-design spiral galaxy at redshift z = 2.18


Although grand-design spiral galaxies are relatively common in the local Universe, only one has been spectroscopically confirmed1 to lie at redshift z > 2 (HDFX 28; z = 2.011); and it may prove to be a major merger that simply resembles a spiral in projection. The rarity of spirals has been explained as a result of disks being dynamically ‘hot’ at z > 2 (refs 2–5), which may instead favour the formation of commonly observed clumpy structures6,7,8,9,10. Alternatively, current instrumentation may simply not be sensitive enough to detect spiral structures comparable to those in the modern Universe11. At z < 2, the velocity dispersion of disks decreases12, and spiral galaxies are more numerous by z ≈ 1 (refs 7, 13–15). Here we report observations of the grand-design spiral galaxy Q2343-BX442 at z = 2.18. Spectroscopy of ionized gas shows that the disk is dynamically hot, implying an uncertain origin for the spiral structure. The kinematics of the galaxy are consistent with a thick disk undergoing a minor merger, which can drive the formation of short-lived spiral structure16,17,18. A duty cycle of <100 Myr for such tidally induced spiral structure in a hot massive disk is consistent with its rarity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Broadband and spectral emission-line morphology of BX442.
Figure 2: Kinematic velocity and velocity-dispersion maps of BX442.


  1. 1

    Dawson, S. et al. Optical and near-infrared spectroscopy of a high-redshift hard X-ray-emitting spiral galaxy. Astron. J. 125, 1236–1246 (2003)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Genzel, R. et al. The rapid formation of a large rotating disk galaxy three billion years after the Big Bang. Nature 442, 786–789 (2006)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Law, D. R. et al. Integral field spectroscopy of high-redshift star-forming galaxies with laser-guided adaptive optics: evidence for dispersion-dominated kinematics. Astrophys. J. 669, 929–946 (2007)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Förster Schreiber, N. M. et al. The SINS survey: SINFONI integral field spectroscopy of z 2 star-forming galaxies. Astrophys. J. 706, 1364–1428 (2009)

    ADS  Article  Google Scholar 

  5. 5

    Law, D. R. et al. The kiloparsec-scale kinematics of high-redshift star-forming galaxies. Astrophys. J. 697, 2057–2082 (2009)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Conselice, C. J., Blackburne, J. A. & Papovich, C. The luminosity, stellar mass, and number density evolution of field galaxies of known morphology from z = 0.5 to 3. Astrophys. J. 620, 564–583 (2005)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Elmegreen, D. M., Elmegreen, B. G., Rubin, D. S. & Schaffer, M. A. Galaxy morphologies in the Hubble Ultra Deep Field: dominance of linear structures at the detection limit. Astrophys. J. 631, 85–100 (2005)

    ADS  Article  Google Scholar 

  8. 8

    Law, D. R. et al. The physical nature of rest-UV galaxy morphology during the peak epoch of galaxy formation. Astrophys. J. 656, 1–26 (2007)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Bournaud, F. & Elmegreen, B. G. Unstable disks at high redshift: evidence for smooth accretion in galaxy formation. Astrophys. J. 694, L158–L161 (2009)

    ADS  Article  Google Scholar 

  10. 10

    Law, D. R. et al. An HST/WFC3-IR morphological survey of galaxies at z = 1.5 - 3.6: I. Survey description and morphological properties of star forming galaxies. Astrophys. J. 745, 85–122 (2012)

    ADS  Article  Google Scholar 

  11. 11

    Conselice, C. J. et al. The tumultuous formation of the Hubble sequence at z &gt; 1 examined with HST/Wide-Field Camera-3 observations of the Hubble Ultra Deep Field. Mon. Not. R. Astron. Soc. 417, 2770–2788 (2011)

    ADS  Article  Google Scholar 

  12. 12

    Wright, S. A. et al. Dynamics of galactic disks and mergers at z 1.6: spatially resolved spectroscopy with Keck Laser Guide Star Adaptive Optics. Astrophys. J. 699, 421–440 (2009)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Abraham, R. G. & van den Bergh, S. The morphological evolution of galaxies. Science 293, 1273–1278 (2001)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Labbé, I. et al. Large disklike galaxies at high redshift. Astrophys. J. 591, L95–L98 (2003)

    ADS  Article  Google Scholar 

  15. 15

    Elmegreen, B. G., Elmegreen, D. M., Fernandez, M. X. & Lemonias, J. J. Bulge and clump evolution in Hubble Ultra Deep Field clump clusters, chains and spiral galaxies. Astrophys. J. 692, 12–31 (2009)

    ADS  Article  Google Scholar 

  16. 16

    Bottema, R. Simulations of normal spiral galaxies. Mon. Not. R. Astron. Soc. 344, 358–384 (2003)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Dubinksi, J., Gauthier, J.-R., Widrow, L. & Nickerson, S. Spiral and bar instabilities provoked by dark matter satellites. Astron. Soc. Pacific Conf. Series 396, 321–324 (2008)

    ADS  Google Scholar 

  18. 18

    Dobbs, C. L., Theis, C., Pringle, J. E. & Bate, M. R. Simulations of the grand design galaxy M51: a case study for analyzing tidally induced spiral structure. Mon. Not. R. Astron. Soc. 403, 625–645 (2010)

    ADS  Article  Google Scholar 

  19. 19

    Kennicutt, R. C., Jr The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Bigiel, F. et al. The star formation law in nearby galaxies on sub-kpc scales. Astron. J. 136, 2846–2871 (2008)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Genzel, R. et al. The SINS survey of z 2 galaxy kinematics: properties of the giant star-forming clumps. Astrophys. J. 733, 101–130 (2011)

    ADS  Article  Google Scholar 

  22. 22

    Elmegreen, B. G. & Elmegreen, D. M. Observations of thick disks in the Hubble Space Telescope Ultra Deep Field. Astrophys. J. 650, 644–660 (2006)

    ADS  Article  Google Scholar 

  23. 23

    Genzel, R. et al. From rings to bulges: evidence for rapid secular galaxy evolution at z 2 from integral field spectroscopy in the SINS survey. Astrophys. J. 687, 59–77 (2008)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Toomre, A. in The Structure and Evolution of Normal Galaxies (eds Fall, S. M. & Lynden-Bell, D.) 111 (Cambridge University Press, 1981)

    Google Scholar 

  25. 25

    Elmegreen, D. M., Elmegreen, B. G., Ravindranath, S. & Coe, D. A. Resolved galaxies in the Hubble Ultra Deep Field: star formation in disks at high redshift. Astrophys. J. 658, 763–777 (2007)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Kriek, M. et al. The Hubble sequence beyond z = 2 for massive galaxies: contrasting large star-forming and compact quiescent galaxies. Astrophys. J. 705, L71–L75 (2009)

    ADS  Article  Google Scholar 

  27. 27

    Förster Schreiber, N. M. et al. Constraints on the assembly and dynamics of galaxies. I. Detailed rest-frame optical morphologies on kiloparsec scale of z 2 star-forming galaxies. Astrophys. J. 731, 65–99 (2011)

    ADS  Article  Google Scholar 

  28. 28

    Purcell, C. W. et al. The Sagittarius impact as an architect of spirality and outer rings in the Milky Way. Nature 477, 301–303 (2011)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Wadsley, J. W., Stadel, J. & Quinn, T. Gasoline: a flexible, parallel implementation of Tree SPH. N. Astron. 9, 137–158 (2004)

    ADS  Article  Google Scholar 

  30. 30

    Martig, M. & Bournaud, F. Formation of late-type spiral galaxies: gas return from stellar populations regulates disk destruction and bulge growth. Astrophys. J. 714, L275–L279 (2010)

    ADS  Article  Google Scholar 

Download references


D.R.L and C.C.S have been supported by grant GO-11694 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. A.E.S acknowledges support from the David and Lucile Packard Foundation. C.R.C acknowledges support from the US National Science Foundation through grant AST-1009452. D.R.L appreciates discussions with J. Taylor, R. Abraham, J. Dubinski, F. Governato and A. Brooks, and thanks M. Peeples for help in obtaining the Keck/OSIRIS data.

Author information




D.R.L. performed the morphological analysis of the Hubble Space Telescope data and wrote the main manuscript text. The Keck/OSIRIS data were obtained by D.R.L. and A.E.S., and analysed by D.R.L. with extensive input from A.E.S. and C.C.S.. N.A.R. provided the Keck/LRIS spectra, Spitzer/MIPS photometry and stellar population modelling code, C.R.C. contributed the hydrodynamic galaxy simulations, and D.K.E. provided the Keck/NIRSPEC spectra. All authors reviewed, discussed and commented on the manuscript.

Corresponding author

Correspondence to David R. Law.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-12, Supplementary Table 1 and additional references. (PDF 1048 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Law, D., Shapley, A., Steidel, C. et al. High velocity dispersion in a rare grand-design spiral galaxy at redshift z = 2.18. Nature 487, 338–340 (2012). https://doi.org/10.1038/nature11256

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing