Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transition


Spontaneous symmetry breaking plays a key role in our understanding of nature. In relativistic quantum field theory, a broken continuous symmetry leads to the emergence of two types of fundamental excitation: massless Nambu–Goldstone modes and a massive ‘Higgs’ amplitude mode. An excitation of Higgs type is of crucial importance in the standard model of elementary particle physics1, and also appears as a fundamental collective mode in quantum many-body systems2. Whether such a mode exists in low-dimensional systems as a resonance-like feature, or whether it becomes overdamped through coupling to Nambu–Goldstone modes, has been a subject of debate2,3,4,5,6,7,8,9. Here we experimentally find and study a Higgs mode in a two-dimensional neutral superfluid close to a quantum phase transition to a Mott insulating phase. We unambiguously identify the mode by observing the expected reduction in frequency of the onset of spectral response when approaching the transition point. In this regime, our system is described by an effective relativistic field theory with a two-component quantum field2,7, which constitutes a minimal model for spontaneous breaking of a continuous symmetry. Additionally, all microscopic parameters of our system are known from first principles and the resolution of our measurement allows us to detect excited states of the many-body system at the level of individual quasiparticles. This allows for an in-depth study of Higgs excitations that also addresses the consequences of the reduced dimensionality and confinement of the system. Our work constitutes a step towards exploring emergent relativistic models with ultracold atomic gases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Illustration of the Higgs mode and experimental sequence.
Figure 2: Softening of the Higgs mode.
Figure 3: Theory of in-trap response.
Figure 4: Scaling of the low-frequency response.
Figure 5: Response between the strongly interacting limit and the weakly interacting limit.


  1. 1

    Weinberg, S. The Quantum Theory of Fields Vol. 2 (Cambridge Univ. Press, 1996)

    Book  Google Scholar 

  2. 2

    Sachdev, S. Quantum Phase Transitions 2nd edn (Cambridge Univ. Press, 2011)

    Book  Google Scholar 

  3. 3

    Chubukov, A. V., Sachdev, S. & Ye, J. Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state. Phys. Rev. B 49, 11919–11961 (1994)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Sachdev, S. Universal relaxational dynamics near two-dimensional quantum critical points. Phys. Rev. B 59, 14054–14073 (1999)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Zwerger, W. Anomalous fluctuations in phases with a broken continuous symmetry. Phys. Rev. Lett. 92, 027203 (2004)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Podolsky, D., Auerbach, A. & Arovas, D. P. Visibility of the amplitude (Higgs) mode in condensed matter. Phys. Rev. B 84, 174522 (2011)

    ADS  Article  Google Scholar 

  7. 7

    Altman, E. & Auerbach, A. Oscillating superfluidity of bosons in optical lattices. Phys. Rev. Lett. 89, 250404 (2002)

    ADS  Article  Google Scholar 

  8. 8

    Pollet, L. & Prokof′ev, N. The Higgs mode in a two-dimensional superfluid. Preprint at (2012)

  9. 9

    Podolsky, D. & Sachdev, S. Spectral functions of the Higgs mode near two-dimensional quantum critical points. Preprint at (2012)

  10. 10

    Sooryakumar, R. & Klein, M. Raman scattering by superconducting-gap excitations and their coupling to charge-density waves. Phys. Rev. Lett. 45, 660–662 (1980)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Littlewood, P. & Varma, C. Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity. Phys. Rev. Lett. 47, 811–814 (1981)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Rüegg, C. et al. Quantum magnets under pressure: controlling elementary excitations in TlCuCl3. Phys. Rev. Lett. 100, 205701 (2008)

    ADS  Article  Google Scholar 

  13. 13

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Spielman, I. B., Phillips, W. D. & Porto, J. V. Mott-insulator transition in a two-dimensional atomic Bose gas. Phys. Rev. Lett. 98, 080404 (2007)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Sengupta, K. & Dupuis, N. Mott-insulator-to-superfluid transition in the Bose-Hubbard model: a strong-coupling approach. Phys. Rev. A 71, 033629 (2005)

    ADS  Article  Google Scholar 

  16. 16

    Huber, S. D., Altman, E., Buchler, H. P. & Blatter, G. Dynamical properties of ultracold bosons in an optical lattice. Phys. Rev. B 75, 085106 (2007)

    ADS  Article  Google Scholar 

  17. 17

    Huber, S., Theiler, B., Altman, E. & Blatter, G. Amplitude mode in the quantum phase model. Phys. Rev. Lett. 100, 050404 (2008)

    CAS  ADS  Article  Google Scholar 

  18. 18

    Menotti, C. & Trivedi, N. Spectral weight redistribution in strongly correlated bosons in optical lattices. Phys. Rev. B 77, 235120 (2008)

    ADS  Article  Google Scholar 

  19. 19

    Graß, T. D., Santos, F. E. A. & Pelster, A. Real-time Ginzburg-Landau theory for bosons in optical lattices. Laser Phys. 21, 1459–1463 (2011)

    ADS  Article  Google Scholar 

  20. 20

    Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004)

    ADS  Article  Google Scholar 

  21. 21

    Schori, C., Stöferle, T., Moritz, H., Köhl, M. & Esslinger, T. Excitations of a superfluid in a three-dimensional optical lattice. Phys. Rev. Lett. 93, 240402 (2004)

    ADS  Article  Google Scholar 

  22. 22

    Bissbort, U. et al. Detecting the amplitude mode of strongly interacting lattice bosons by Bragg scattering. Phys. Rev. Lett. 106, 205303 (2011)

    ADS  Article  Google Scholar 

  23. 23

    Endres, M. et al. Observation of correlated particle-hole pairs and string order in low-dimensional Mott insulators. Science 334, 200–203 (2011)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010)

    CAS  ADS  Article  Google Scholar 

  25. 25

    Gerbier, F. Boson Mott insulators at finite temperatures. Phys. Rev. Lett. 99, 120405 (2007)

    ADS  Article  Google Scholar 

  26. 26

    Capogrosso-Sansone, B., Söyler, S., Prokof′ev, N. & Svistunov, B. Monte Carlo study of the two-dimensional Bose-Hubbard model. Phys. Rev. A 77, 015602 (2008)

    ADS  Article  Google Scholar 

  27. 27

    Varma, C. Higgs Boson in superconductors. J. Low Temp. Phys. 126, 901–909 (2002)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Cazalilla, M. A., Ho, A. F. & Giamarchi, T. Interacting Bose gases in quasi-one-dimensional optical lattices. N. J. Phys. 8, 158 (2006)

    Article  Google Scholar 

  29. 29

    Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Randall, L. & Sundrum, R. An alternative to compactification. Phys. Rev. Lett. 83, 4690–4693 (1999)

    CAS  ADS  MathSciNet  Article  Google Scholar 

Download references


We thank C. Weitenberg and J. F. Sherson for their contribution to the design and construction of the apparatus. We thank D. Podolsky, W. Zwerger, S. Sachdev, R. Sensarma, W. Hofstetter, U. Bissbort, L. Pollet and N. Prokof′ev for discussions. We acknowledge funding by the MPG, DFG, EU (NAMEQUAM, AQUTE, Marie Curie Fellowship to M.C.), JSPS (Postdoctoral Fellowship for Research Abroad to T.F.) and California Institute of Technology (IQIM and Lee A. DuBridge fellowship to D.P.). The computations in this paper were done on the Odyssey cluster supported by the FAS Science Division Research Computing Group at Harvard University.

Author information




All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to Manuel Endres.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-4 and Supplementary Figures 1-8. (PDF 1478 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Endres, M., Fukuhara, T., Pekker, D. et al. The ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transition. Nature 487, 454–458 (2012).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing