Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical nano-imaging of gate-tunable graphene plasmons


The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric control of light could be through plasmon polaritons—coupled excitations of photons and charge carriers—in graphene1,2,3,4,5. In this two-dimensional sheet of carbon atoms6, it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density. Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically7,8, no experiments so far have directly resolved propagating plasmons in real space. Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light9,10,11. We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short—more than 40 times smaller than the wavelength of illumination. We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume. The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors. This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials12, nanoscale optical processing, and strongly enhanced light–matter interactions for quantum devices13 and biosensing applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging propagating and localized graphene plasmons by scattering-type SNOM.
Figure 2: Controlling the plasmon wavelength over a wide range.
Figure 3: Comparison of theoretical model with experimental results.
Figure 4: Plasmonic switching and active control of the plasmon wavelength by electrical gating.


  1. Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at finite doping. N. J. Phys. 8, 318 (2006)

    Article  Google Scholar 

  2. Hwang, E. H. &. das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007)

    Article  ADS  Google Scholar 

  3. Polini, M. et al. Plasmons and the spectral function of graphene. Phys. Rev. B 77, 081411(R) (2008)

    Article  ADS  Google Scholar 

  4. Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009)

    Article  ADS  Google Scholar 

  5. Hill, A., Mikhailov, S. A. & Ziegler, K. Dielectric function and plasmons in graphene. Europhys. Lett. 87, 27005 (2009)

    Article  ADS  Google Scholar 

  6. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  ADS  Google Scholar 

  7. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnol. 6, 630–634 (2011)

    Article  CAS  ADS  Google Scholar 

  8. Fei, Z. et al. Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 interface. Nano Lett. 11, 4701–4705 (2011)

    Article  CAS  ADS  Google Scholar 

  9. Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Phil. Trans. A 362, 787–805 (2004)

    Article  CAS  ADS  Google Scholar 

  10. Huber, A., Ocelic, N., Kazantsev, D. & Hillenbrand, R. Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. Lett. 87, 081103 (2005)

    Article  ADS  Google Scholar 

  11. Novotny, L. & Hecht, B. Principles of Nano-optics (Cambridge Univ. Press, 2006)

    Book  Google Scholar 

  12. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011)

    Article  CAS  ADS  Google Scholar 

  13. Koppens, F. H. L., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011)

    Article  CAS  ADS  Google Scholar 

  14. Liu, Y., Willis, R., Emtsev, K. & Seyller, T. Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets. Phys. Rev. B 78, 201403(R) (2008)

    Article  ADS  Google Scholar 

  15. Eberlein, T. et al. Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 77, 233406 (2008)

    Article  ADS  Google Scholar 

  16. Zhou, W. et al. Atomically localized plasmon enhancement in monolayer graphene. Nature Nanotechnol 7, 161–165 (2012)

    Article  CAS  ADS  Google Scholar 

  17. Bostwick, A., Ohta, T., Seyller, T., Horn, K. & Rotenberg, E. Quasiparticle dynamics in graphene. Nature Phys. 3, 36–40 (2007)

    Article  CAS  ADS  Google Scholar 

  18. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light matter interaction at the nanometre scale. Nature 418, 159–162 (2002)

    Article  CAS  ADS  Google Scholar 

  19. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006)

    Article  ADS  Google Scholar 

  20. Camara, N. et al. Current status of self-organized epitaxial graphene ribbons on the C face of 6H–SiC substrates. J. Phys. D Appl. Phys. 43, 374011 (2010)

    Article  Google Scholar 

  21. Castro Neto, A. H., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  CAS  ADS  Google Scholar 

  22. Crassee, I. et al. Multicomponent magneto-optical conductivity of multilayer graphene on SiC. Phys. Rev. B 84, 035103 (2011)

    Article  ADS  Google Scholar 

  23. Hofmann, M., Zywietz, A., Karch, K. & Bechstedt, F. Lattice dynamics of SiC polytypes within the bond-charge model. Phys. Rev. B 50, 13401 (1994)

    Article  CAS  ADS  Google Scholar 

  24. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature (this issue)

  25. Christensen, J., Manjavacas, A., Thongrattanasiri, S., Koppens, F. H. L. & García de Abajo, F. J. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6, 431–440 (2012)

    Article  CAS  Google Scholar 

  26. Atwater, H. A. The promise of plasmonics. Sci. Am. 296, 56–62 (2007)

    Article  CAS  Google Scholar 

  27. Zia, R., Schuller, J. A., Chandran, A. & Brongersma, M. L. Plasmonics: the next chip-scale technology. Mater. Today 9, 20–27 (2006)

    Article  CAS  Google Scholar 

  28. Thongrattanasiri, S., Koppens, F. & García de Abajo, F. J. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012)

    Article  ADS  Google Scholar 

  29. Hecht, B., Bielefeldt, H., Novotny, L., Inouye, Y. & Pohl, D. W. Local excitation, scattering, and interference of surface plasmons. Phys. Rev. Lett 77, 1889–1892 (1996)

    Article  CAS  ADS  Google Scholar 

  30. Nikitin, A. Y., Guinea, F., Garcia-Vidal, F. J. & Martín-Moreno, L. Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B 84, 161407(R) (2011)

    Article  ADS  Google Scholar 

Download references


We thank L. Novotny, N. van Hulst, R. Quidant and P. Jarillo-Herrero for discussions. This work was supported in part by the Fundacicio Cellex Barcelona, the Spanish MICINN (MAT2010-14885 and Consolider, the European FP7 projects FP7-HEALTH-F5-2009-241818-NANOANTENNA, FP7-ICT- 2009-4-248909-LIMA and FP7-ICT-2009-4-248855-N4E, the ERC Starting grant no. 258461 (TERATOMO), and the ERC Career integration grant GRANOP.

Author information

Authors and Affiliations



J.C., P.A.-G., F.H., F.H.L.K. and R.H. carried out the near-field imaging experiments and participated in data analysis. M.S. participated in data analysis. S.T. and F.J.G.d.A. contributed to the interpretation of the data and developed analytical and computational theoretical tools. N.C., P.G., A.C., A.P. and A.Z.E. provided materials. M.B. and J.O. fabricated the devices. J.G.d.A., R.H. and F.H.L.K. wrote the manuscript.

Corresponding authors

Correspondence to F. Javier García de Abajo, Rainer Hillenbrand or Frank H. L. Koppens.

Ethics declarations

Competing interests

R.H. is co-founder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems, such as the one used in this study. All other authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-14 and Supplementary References. (PDF 3442 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, J., Badioli, M., Alonso-González, P. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing