Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial

Abstract

Electron–electron interactions can render an otherwise conducting material insulating1, with the insulator–metal phase transition in correlated-electron materials being the canonical macroscopic manifestation of the competition between charge-carrier itinerancy and localization. The transition can arise from underlying microscopic interactions among the charge, lattice, orbital and spin degrees of freedom, the complexity of which leads to multiple phase-transition pathways. For example, in many transition metal oxides, the insulator–metal transition has been achieved with external stimuli, including temperature, light, electric field, mechanical strain or magnetic field2,3,4,5,6,7. Vanadium dioxide is particularly intriguing because both the lattice and on-site Coulomb repulsion contribute to the insulator-to-metal transition at 340 K (ref. 8). Thus, although the precise microscopic origin of the phase transition remains elusive, vanadium dioxide serves as a testbed for correlated-electron phase-transition dynamics. Here we report the observation of an insulator–metal transition in vanadium dioxide induced by a terahertz electric field. This is achieved using metamaterial-enhanced picosecond, high-field terahertz pulses to reduce the Coulomb-induced potential barrier for carrier transport9. A nonlinear metamaterial response is observed through the phase transition, demonstrating that high-field terahertz pulses provide alternative pathways to induce collective electronic and structural rearrangements. The metamaterial resonators play a dual role, providing sub-wavelength field enhancement that locally drives the nonlinear response, and global sensitivity to the local changes, thereby enabling macroscopic observation of the dynamics10,11. This methodology provides a powerful platform to investigate low-energy dynamics in condensed matter and, further, demonstrates that integration of metamaterials with complex matter is a viable pathway to realize functional nonlinear electromagnetic composites.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Low-field THz characterization of 75-nm VO 2 thin film on sapphire with and without metamaterials.
Figure 2: Full-wave simulations of the electric field enhancement in the SRR and nonlinear THz transmission experiment.
Figure 3: THz pump–probe measurement and model calculation.
Figure 4: THz-field-induced damage as revealed by optical and scanning electron micrographs.

References

  1. 1

    Morin, F. J. Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 3, 34–36 (1959)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Limelette, P. et al. Universality and critical behavior at the Mott transition. Science 302, 89–92 (2003)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Cao, J. et al. Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. Nature Nanotechnol. 4, 732–737 (2009)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Liu, M. K. et al. Photoinduced phase transitions by time resolved far-infrared spectroscopy in V2O3 . Phys. Rev. Lett. 107, 066403 (2011)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Cavalleri, A. et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 87, 237401 (2001)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Berglund, C. N. & Guggenheim, H. J. Electronic properties of VO2 near the semiconductor-metal transition. Phys. Rev. 185, 1022–1033 (1969)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Stefanovich, G., Pergament, A. & Stefanovich, D. Electrical switching and Mott transition in VO2. J. Phys. Condens. Matter 12, 8837–8845 (2000)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Merbold, H., Bitzer, A. & Feurer, T. Second harmonic generation based on strong field enhancement in nanostructured THz materials. Opt. Express 19, 7262–7273 (2011)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Chen, H.-T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Kübler, C. et al. Coherent structural dynamics and electronics correlations during an ultrafast insulator-to-metal phase transition in VO2 . Phys. Rev. Lett. 99, 116401 (2007)

    ADS  Article  Google Scholar 

  13. 13

    Hilton, D. J. et al. Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide. Phys. Rev. Lett. 99, 226401 (2007)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Kim, H.-T. et al. Mechanism and observation of Mott transition in VO2-based two- and three- terminal devices. N. J. Phys. 6, 52 (2004)

    Article  Google Scholar 

  15. 15

    Hoffmann, M. C., Hebling, J., Hwang, H. Y., Yeh, K.-L. & Nelson, K. A. THz-pump/THz-probe spectroscopy of semiconductors at high field strengths. J. Opt. Soc. Am. B 26, A29–A34 (2009)

    CAS  Article  Google Scholar 

  16. 16

    Yeh, K.-L., Hoffmann, M. C., Hebling, J. & Nelson, K. A. Generation of 10 µJ ultrashort THz pulses by optical rectification. Appl. Phys. Lett. 90, 171121 (2007)

    ADS  Article  Google Scholar 

  17. 17

    Hirori, H., Doi, A., Blanchard, F. & Tanaka, K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3 . Appl. Phys. Lett. 98, 091106 (2011)

    ADS  Article  Google Scholar 

  18. 18

    Hoffmann, M. C., Hebling, J., Hwang, H. Y., Yeh K.-L & Nelson K. A Impact ionization in InSb proved by terahertz pump-terahertz probe spectroscopy. Phys. Rev. B 79, 161201 (2009)

    ADS  Article  Google Scholar 

  19. 19

    West, K. G. et al. Growth and characterization of vanadium dioxide thin films prepared by reactive-based target ion beam deposition. J. Vac. Sci. Technol. A 26, 133–139 (2008)

    CAS  Article  Google Scholar 

  20. 20

    Werley, C. A. et al. Time-resolved imaging of near fields in THz antennas and direct quantitative measurement of field enhancements. Opt. Express 20, 8551–8567 (2012)

    ADS  Article  Google Scholar 

  21. 21

    Driscoll, T. et al. Memory metamaterials. Science 325, 1518–1521 (2009)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Seo, M. A. et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nature Photon. 3,152–156 (2009)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Shalaby, M. et al. Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays. Appl. Phys. Lett. 99, 041110 (2011)

    ADS  Article  Google Scholar 

  24. 24

    Simmons, J. G. Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems. Phys. Rev. 155, 657–660 (1967)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Yeargan, J. R. & Taylor, H. L. The Poole-Frenkel effect with compensation present. J. Appl. Phys. 39, 5600–5604 (1968)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Pergament, A., Boriskov, P. P., Velichko, A. A. & Kuldin, N. A. Switching effect and the metal-insulator transition in electric field. J. Phys. Chem. Solids 71, 874–879 (2010)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Groeneveld, R. H. M., Sprik, R. & Lagendijk, A. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. Phys. Rev. B 51, 11433–11445 (1995)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Pashkin, A. et al. Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy. Phys. Rev. B 83, 195120 (2011)

    ADS  Article  Google Scholar 

  29. 29

    Basov, D. N. et al. Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83, 471–541 (2011)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from DOE-BES under grant DE-FG02-09ER46643 and from ONR grant N00014-09-1-1103.

Author information

Affiliations

Authors

Contributions

R.D.A., K.A.N, M.L. and H.Y.H. came up with the experimental idea. H.Y.H. and M.L. performed the experiments. H.T., K.F., M.L., F.G.O. and X.Z. fabricated the metamaterial structures. A.J.S., M.L. and H.Y.H. performed full-wave electromagnetic simulation and analysed the data. K.G.W., S.K., J.L. and S.A.W. prepared the VO2 thin films. A.C.S. and G.R.K. assisted with the simulation. M.L., H.Y.H., R.D.A. and K.A.N. wrote the manuscript. All authors contributed to the understanding of the underlying physics.

Corresponding authors

Correspondence to Keith A. Nelson or Richard D. Averitt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Materials and Methods, Supplementary Table 1, Supplementary Figures 1-2 and additional references. (PDF 424 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, M., Hwang, H., Tao, H. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012). https://doi.org/10.1038/nature11231

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.