Dodecagonal tiling in mesoporous silica

Abstract

Recent advances in the fabrication of quasicrystals in soft matter systems have increased the length scales for quasicrystals1 into the mesoscale range (20 to 500 ångströms). Thus far, dendritic liquid crystals2, ABC-star polymers3, colloids4 and inorganic nanoparticles5 have been reported to yield quasicrystals. These quasicrystals offer larger length scales than intermetallic quasicrystals (a few ångströms)1,6, thus potentially leading to optical applications through the realization of a complete photonic bandgap induced via multiple scattering of light waves in virtually all directions7,8,9. However, the materials remain far from structurally ideal, in contrast to their intermetallic counterparts, and fine control over the structure through a self-organization process has yet to be attained. Here we use the well-established self-assembly of surfactant micelles to produce a new class of mesoporous silicas, which exhibit 12-fold (dodecagonal) symmetry in both electron diffraction and morphology. Each particle reveals, in the 12-fold cross-section, an analogue of dodecagonal quasicrystals in the centre surrounded by 12 fans of crystalline domains in the peripheral part. The quasicrystallinity has been verified by selected-area electron diffraction and quantitative phason strain analyses on transmission electron microscope images obtained from the central region. We argue that the structure forms through a non-equilibrium growth process, wherein the competition between different micellar configurations has a central role in tuning the structure. A simple theoretical model successfully reproduces the observed features and thus establishes a link between the formation process and the resulting structure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The three basic crystal structures and their packing geometries.
Figure 2: Mesoporous particles with dodecagonal morphology and associated electron microscopy.
Figure 3: Diffraction patterns and tilings indicating fine quasicrystallinity.
Figure 4: Three tilings, each containing 1,500 vertices, simulated using different input parameters.

References

  1. 1

    Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Zeng, X. et al. Supramolecular dendritic liquid quasicrystals. Nature 428, 157–160 (2004)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Hayashida, K., Dotera, T., Takano, A. & Matsushita, Y. Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 98, 195502 (2007)

    ADS  Article  Google Scholar 

  4. 4

    Fischer, S. et al. Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry. Proc. Natl Acad. Sci. 108, 1810–1814 (2011)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Steurer, W. Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Z. Kristallogr. 219, 391–446 (2004)

    MathSciNet  CAS  MATH  Google Scholar 

  7. 7

    Zoorob, M. E., Charlton, M. D. B., Parker, G. J., Baumberg, J. J. & Netti, M. C. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature 404, 740–743 (2000)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Man, W., Megens, M., Steinhardt, P. J. & Chaikin, P. M. Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature 436, 993–996 (2005)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Chan, Y. S., Chan, C. T. & Liu, Z. Y. Photonic band gaps in two dimensional photonic quasicrystals. Phys. Rev. Lett. 80, 956–959 (1998)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Gao, C., Sakamoto, Y., Terasaki, O. & Che, S. Formation of diverse mesophases templated by a diprotic anionic surfactant. Chem. Eur. J. 14, 11423–11428 (2008)

    CAS  Article  Google Scholar 

  11. 11

    Ishimasa, T., Nissen, H. U. & Fukano, Y. New ordered state between crystalline and amorphous in Ni-Cr particles. Phys. Rev. Lett. 55, 511–513 (1985)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Frank, F. C. & Kasper, J. S. Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystallogr. 12, 483–499 (1959)

    CAS  Article  Google Scholar 

  13. 13

    Sullivan, J. M. in Foams and Emulsions (eds Sadoc, J. F. & Rivier, N. ) 379–402 (Kluwer Academic, 1998)

    Google Scholar 

  14. 14

    Borén, B. Röntgenuntersuchung der Legierungen von Silicium mit Chrom, Mangan, Kobalt und Nickel. Ark. Kemi. Miner. Geol. 11, 1–28 (1933)

    Google Scholar 

  15. 15

    Bergman, G. & Shoemaker, D. P. The determination of the crystal structure of the sigma phase in the iron-chromium and iron-molybdenum systems. Acta Crystallogr. 7, 857–865 (1954)

    CAS  Article  Google Scholar 

  16. 16

    Ye, H. Q., Li, D. X. & Kuo, K. H. Structure of the H phase determined by high-resolution electron microscopy. Acta Crystallogr. B 40, 461–465 (1984)

    Article  Google Scholar 

  17. 17

    Grunbaum, B. & Shephard, G. C. Tilings and Patterns (Freeman, 1986)

    Google Scholar 

  18. 18

    Baake, M., Klitzing, R. & Schlottmann, M. Fractally shaped acceptance domains of quasiperiodic square-triangle tilings with dodecagonal symmetry. Physica A 191, 554–558 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19

    Stampfli, P. A. dodecagonal quasiperiodic lattice in two dimensions. Helv. Phys. Acta 59, 1260–1263 (1986)

    Google Scholar 

  20. 20

    Leung, P. W., Henley, C. L. & Chester, G. V. Dodecagonal order in a two-dimensional Lennard-Jones system. Phys. Rev. B 39, 446–458 (1989)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  21. 21

    Miyasaka, K., Han, L., Che, S. & Terasaki, O. A lesson from the unusual morphology of silica mesoporous crystals: growth and close packing of spherical micelles with multiple twinning. Angew. Chem. 118, 6666–6669 (2006)

    Article  Google Scholar 

  22. 22

    Oxborrow, M. & Henley, C. L. Random square-triangle tilings: a model for twelvefold-symmetric quasicrystals. Phys. Rev. B 48, 6966–6998 (1993)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Yamamoto, A. Crystallography of quasiperiodic crystals. Acta Crystallogr. A 52, 509–560 (1996)

    Article  Google Scholar 

  24. 24

    Cockayne, E. Nonconnected atomic surfaces for quasicrystalline sphere packings. Phys. Rev. B 49, 5896–5910 (1994)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Ziherl, P. & Kamien, R. D. Maximizing entropy by minimizing area: towards a new principle of self-organization. J. Phys. Chem. B 105, 10147–10158 (2001)

    CAS  Article  Google Scholar 

  26. 26

    Weaire, D. & Phelan, R. A counter-example to Kelvin's conjecture on minimal surfaces. Phil. Mag. Lett. 69, 107–110 (1994)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Kusner, R. & Sullivan, J. M. in The Kelvin Problem: Foam Structures of Minimal Surface Area (ed. Weaire, D. ) 71–80 (Taylor and Francis, 1996)

    Google Scholar 

  28. 28

    Eden, M. in Symposium on Information Theory in Biology (ed. Yockey, P. H. ) 359–370 (Pergamon, Symposium Publications Division, 1958)

    Google Scholar 

  29. 29

    Meakin, P. Noise-reduced and anisotropy-enhanced Eden and screened-growth models. Phys. Rev. A 38, 418–426 (1988)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Durian, D. J. & Raghavan, S. R. Making a frothy shampoo or beer. Phys. Today 63, 62–63 (2010)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank K. Niizeki, T. Dotera, A. E. Garcia-Bennett, S. Che and C. Gao for discussions, O. M. Yaghi and M. O’Keeffe for critical reading of the manuscript, and J. Shen for encouragement and support. This work was supported by the Swedish Research Council (VR), the Japan Science and Technology Agency (JST) and Berzelii EXSELENT. SEM and TEM studies were performed at the Electron Microscopy Center (EMC) at Stockholm University, which is supported by the Knut and Alice Wallenberg Foundation. Support from the WCU programme, Korea (R-31-2008-000-10055-0; K.M. and O.T.), Grants-in-Aid for Young Scientists (B) of JSPS (no. 23710132; Y.S.), and Special Coordination Funds for Promoting Science and Technology of MEXT, Japan (Y.S.) is also acknowledged.

Author information

Affiliations

Authors

Contributions

C.X. synthesized the materials and carried out electron microscopy observations. C.X. and N.F. analysed the tilings obtained experimentally. N.F. developed the theoretical part, including the modelling of the energetics and the growth process. K.M. and Y.S. contributed early TEM observations and data analysis. C.X. and N.F. wrote the manuscript with inputs from all co-authors. O.T. initiated and led the project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Osamu Terasaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-5, a Supplementary Table, Supplementary Text and Data and additional references. (PDF 1347 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiao, C., Fujita, N., Miyasaka, K. et al. Dodecagonal tiling in mesoporous silica. Nature 487, 349–353 (2012). https://doi.org/10.1038/nature11230

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.