Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A filament of dark matter between two clusters of galaxies

Abstract

It is a firm prediction of the concordance cold-dark-matter cosmological model that galaxy clusters occur at the intersection of large-scale structure filaments1. The thread-like structure of this ‘cosmic web’ has been traced by galaxy redshift surveys for decades2,3. More recently, the warm–hot intergalactic medium (a sparse plasma with temperatures of 105 kelvin to 107 kelvin) residing in low-redshift filaments has been observed in emission4 and absorption5,6. However, a reliable direct detection of the underlying dark-matter skeleton, which should contain more than half of all matter7, has remained elusive, because earlier candidates for such detections8,9,10 were either falsified11,12 or suffered from low signal-to-noise ratios8,10 and unphysical misalignments of dark and luminous matter9,10. Here we report the detection of a dark-matter filament connecting the two main components of the Abell 222/223 supercluster system from its weak gravitational lensing signal, both in a non-parametric mass reconstruction and in parametric model fits. This filament is coincident with an overdensity of galaxies10,13 and diffuse, soft-X-ray emission4, and contributes a mass comparable to that of an additional galaxy cluster to the total mass of the supercluster. By combining this result with X-ray observations4, we can place an upper limit of 0.09 on the hot gas fraction (the mass of X-ray-emitting gas divided by the total mass) in the filament.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mass reconstruction of Abell 222/223.
Figure 2: Posterior probability distributions for cluster virial radii and filament strength.
Figure 3: Surface mass density of the best fit parametric model.

References

  1. 1

    Bond, J. R., Kofman, L. & Pogosyan, D. How filaments are woven into the cosmic web. Nature 380, 603–606 (1996)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Joeveer, M., Einasto, J. & Tago, E. Spatial distribution of galaxies and of clusters of galaxies in the southern galactic hemisphere. Mon. Not. R. Astron. Soc. 185, 357–370 (1978)

    ADS  Article  Google Scholar 

  3. 3

    Geller, M. J. & Huchra, J. P. Mapping the universe. Science 246, 897–903 (1989)

    ADS  CAS  Article  PubMed  Google Scholar 

  4. 4

    Werner, N. et al. Detection of hot gas in the filament connecting the clusters of galaxies Abell 222 and Abell 223. Astron. Astrophys. 482, L29–L33 (2008)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Buote, D. A. et al. X-ray absorption by WHIM in the Sculptor Wall. Astrophys. J. 695, 1351–1356 (2009)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Fang, T. et al. Confirmation of X-ray absorption by warm-hot intergalactic medium in the Sculptor Wall. Astrophys. J. 714, 1715–1724 (2010)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Aragón-Calvo, M. A., van de Weygaert, R. & Jones, B. J. T. Multiscale phenomenology of the cosmic web. Mon. Not. R. Astron. Soc. 408, 2163–2187 (2010)

    ADS  Article  Google Scholar 

  8. 8

    Kaiser, N. et al. A photometric and weak lensing analysis of the z = 0.42 supercluster MS0302+17. Preprint at http://arxiv.org/abs/astro-ph/9809268 (1998)

  9. 9

    Gray, M. E. et al. Probing the distribution of dark matter in the A901/902 supercluster with weak lensing. Astrophys. J. 568, 141–162 (2002)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Dietrich, J. P., Schneider, P., Clowe, D., Romano-Díaz, E. & Kerp, J. Weak lensing study of dark matter filaments and application to the binary cluster A 222 and A 223. Astron. Astrophys. 440, 453–471 (2005)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Gavazzi, R., Mellier, Y., Fort, B., Cuillandre, J.-C. & Dantel-Fort, M. Mass and light in the supercluster of galaxies MS0302+17. Astron. Astrophys. 422, 407–422 (2004)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Heymans, C. et al. The dark matter environment of the Abell 901/902 supercluster: a weak lensing analysis of the HST STAGES survey. Mon. Not. R. Astron. Soc. 385, 1431–1442 (2008)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Dietrich, J. P., Clowe, D. I. & Soucail, G. Spectroscopy of the neighboring massive clusters Abell 222 and Abell 223. Astron. Astrophys. 394, 395–403 (2002)

    ADS  Article  Google Scholar 

  14. 14

    Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997)

    ADS  Article  Google Scholar 

  15. 15

    Dolag, K. et al. Numerical study of halo concentrations in dark-energy cosmologies. Astron. Astrophys. 416, 853–864 (2004)

    ADS  Article  Google Scholar 

  16. 16

    King, I. R. The structure of star clusters. III. Some simple dynamical models. Astron. J. 71, 64–75 (1966)

    ADS  Article  Google Scholar 

  17. 17

    Colberg, J. M., Krughoff, K. S. & Connolly, A. J. Intercluster filaments in a ΛCDM Universe. Mon. Not. R. Astron. Soc. 359, 272–282 (2005)

    ADS  Article  Google Scholar 

  18. 18

    Mead, J. M. G., King, L. J. & McCarthy, I. G. Probing the cosmic web: intercluster filament detection using gravitational lensing. Mon. Not. R. Astron. Soc. 401, 2257–2267 (2010)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Kahn, F. D. & Woltjer, L. Intergalactic matter and the galaxy. Astrophys. J. 130, 705–717 (1959)

    ADS  Article  Google Scholar 

  20. 20

    Sandage, A. The redshift-distance relation. IX—Perturbation of the very nearby velocity field by the mass of the Local Group. Astrophys. J. 307, 1–19 (1986)

    ADS  Article  Google Scholar 

  21. 21

    Simionescu, A. et al. Baryons at the edge of the X-ray-brightest galaxy cluster. Science 331, 1576–1579 (2011)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Ilbert, O. et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey. Astron. Astrophys. 457, 841–856 (2006)

    ADS  Article  Google Scholar 

  23. 23

    Allen, S. W. et al. Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters. Mon. Not. R. Astron. Soc. 383, 879–896 (2008)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Davé, R. et al. Baryons in the warm-hot intergalactic medium. Astrophys. J. 552, 473–483 (2001)

    ADS  Article  Google Scholar 

  25. 25

    Miller, L., Kitching, T. D., Heymans, C., Heavens, A. F. & van Waerbeke, L. Bayesian galaxy shape measurement for weak lensing surveys—I. Methodology and a fast-fitting algorithm. Mon. Not. R. Astron. Soc. 382, 315–324 (2007)

    ADS  Article  Google Scholar 

  26. 26

    Kitching, T. D., Miller, L., Heymans, C. E., van Waerbeke, L. & Heavens, A. F. Bayesian galaxy shape measurement for weak lensing surveys—II. Application to simulations. Mon. Not. R. Astron. Soc. 390, 149–167 (2008)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

J.P.D. was supported by NSF grant AST 0807304. A.S. acknowledges support from the National Aeronautics and Space Administration through Einstein Postdoctoral Fellowship Award Number PF9-00070.

Author information

Affiliations

Authors

Contributions

J.P.D. led the project, reduced the optical data, performed the weak lensing analysis and wrote the manuscript. N.W. contributed to the writing of the manuscript. N.W., A.F. and A.S. performed the X-ray analysis and estimated the gas mass. L.M. and T.K. wrote the shear estimation code. The timing argument was made by D.C. All authors discussed all results and commented on the manuscript.

Corresponding author

Correspondence to Jörg P. Dietrich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and additional references, Supplementary Figure 1 which shows the E- and B-mode reconstruction of the A 222/223 supercluster field and Supplementary Figure 2 which shows the posterior probability distributions for the 8 free parameters when we leave the ellipticity of A 222 and A 223-S free. (PDF 479 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dietrich, J., Werner, N., Clowe, D. et al. A filament of dark matter between two clusters of galaxies. Nature 487, 202–204 (2012). https://doi.org/10.1038/nature11224

Download citation

Further reading

  • Cosmological N-body simulations: a challenge for scalable generative models

    • Nathanaël Perraudin
    • , Ankit Srivastava
    • , Aurelien Lucchi
    • , Tomasz Kacprzak
    • , Thomas Hofmann
    •  & Alexandre Réfrégier

    Computational Astrophysics and Cosmology (2019)

  • Assessing the influence of one astronomy camp over 50 years

    • Hannah S. Dalgleish
    •  & Joshua L. Veitch-Michaelis

    Nature Astronomy (2019)

  • Fast cosmic web simulations with generative adversarial networks

    • Andres C. Rodríguez
    • , Tomasz Kacprzak
    • , Aurelien Lucchi
    • , Adam Amara
    • , Raphaël Sgier
    • , Janis Fluri
    • , Thomas Hofmann
    •  & Alexandre Réfrégier

    Computational Astrophysics and Cosmology (2018)

  • Cosmology and fundamental physics with the Euclid satellite

    • Luca Amendola
    • , Stephen Appleby
    • , Anastasios Avgoustidis
    • , David Bacon
    • , Tessa Baker
    • , Marco Baldi
    • , Nicola Bartolo
    • , Alain Blanchard
    • , Camille Bonvin
    • , Stefano Borgani
    • , Enzo Branchini
    • , Clare Burrage
    • , Stefano Camera
    • , Carmelita Carbone
    • , Luciano Casarini
    • , Mark Cropper
    • , Claudia de Rham
    • , Jörg P. Dietrich
    • , Cinzia Di Porto
    • , Ruth Durrer
    • , Anne Ealet
    • , Pedro G. Ferreira
    • , Fabio Finelli
    • , Juan García-Bellido
    • , Tommaso Giannantonio
    • , Luigi Guzzo
    • , Alan Heavens
    • , Lavinia Heisenberg
    • , Catherine Heymans
    • , Henk Hoekstra
    • , Lukas Hollenstein
    • , Rory Holmes
    • , Zhiqi Hwang
    • , Knud Jahnke
    • , Thomas D. Kitching
    • , Tomi Koivisto
    • , Martin Kunz
    • , Giuseppe La Vacca
    • , Eric Linder
    • , Marisa March
    • , Valerio Marra
    • , Carlos Martins
    • , Elisabetta Majerotto
    • , Dida Markovic
    • , David Marsh
    • , Federico Marulli
    • , Richard Massey
    • , Yannick Mellier
    • , Francesco Montanari
    • , David F. Mota
    • , Nelson J. Nunes
    • , Will Percival
    • , Valeria Pettorino
    • , Cristiano Porciani
    • , Claudia Quercellini
    • , Justin Read
    • , Massimiliano Rinaldi
    • , Domenico Sapone
    • , Ignacy Sawicki
    • , Roberto Scaramella
    • , Constantinos Skordis
    • , Fergus Simpson
    • , Andy Taylor
    • , Shaun Thomas
    • , Roberto Trotta
    • , Licia Verde
    • , Filippo Vernizzi
    • , Adrian Vollmer
    • , Yun Wang
    • , Jochen Weller
    •  & Tom Zlosnik

    Living Reviews in Relativity (2018)

  • Light from ancient quasar reveals intergalactic web

    • Ron Cowen

    Nature (2014)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing