• An Erratum to this article was published on 08 August 2012


The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology1 to climate science2, yet these properties are surprisingly difficult to measure in the particles’ native environment. Electron microscopy requires collection of particles on a substrate3; visible light scattering provides insufficient resolution4; and X-ray synchrotron studies have been limited to ensembles of particles5. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source6 free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins7, vibrational energy transfer by the hydrodynamic interaction of amino acids8, and large-scale production of nanoscale structures by flame synthesis9.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    & Urban Airborne Particulate Matter (Springer, 2010)

  2. 2.

    Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695–697 (2001)

  3. 3.

    et al. Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. J. Aerosol Sci. 34, 1347–1370 (2003)

  4. 4.

    et al. Two-dimensional Guinier analysis: application of single aerosol particles in-flight. Opt. Express 18, 23343–23352 (2010)

  5. 5.

    et al. X-ray scattering and spectroscopy studies on diesel soot from oxygenated fuel under various engine load conditions. Carbon 43, 2588–2599 (2005)

  6. 6.

    et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010)

  7. 7.

    & Multifractal analysis of solvent accessibilities in proteins. Phys. Rev. E 52, 880–887 (1995)

  8. 8.

    Proteins as fractals: role of the hydrodynamic interaction. Phys. Rev. E 83, 020902(R) (2011)

  9. 9.

    et al. Probing the dynamics of nanoparticle growth in a flame using synchrotron radiation. Nature Mater. 3, 370–373 (2004)

  10. 10.

    & Global and regional climate changes due to black carbon. Nature Geosci. 1, 221–227 (2008)

  11. 11.

    Light scattering by fractal aggregates: a review. Aerosol Sci. Technol. 35, 648–687 (2001)

  12. 12.

    Test of a mean field theory for the optics of fractal clusters. J. Mod. Opt. 36, 1031–1057 (1989)

  13. 13.

    & In situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. Proc. Natl Acad. Sci. USA 106, 11872–11877 (2009)

  14. 14.

    et al. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc. Natl Acad. Sci. USA 105, 10291–10296 (2008)

  15. 15.

    Fractality of sooty smoke: implications for the severity of nuclear winter. Nature 339, 611–613 (1989)

  16. 16.

    Effects of externally-through-internally-mixed soot inclusions within clouds and precipitation on global climate. J. Phys. Chem. A 110, 6860–6873 (2006)

  17. 17.

    et al. Hybrid superaggregate morphology as a result of aggregation in a cluster-dense aerosol. Phys. Rev. E 73, 011404 (2006)

  18. 18.

    et al. Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame. Combust. Flame 92, 320–333 (1993)

  19. 19.

    et al. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nucl. Instr. Meth. A 614, 483–496 (2010)

  20. 20.

    AMO instrumentation for the LCLS x-ray FEL. Eur. Phys. J. Spec. Top. 169, 129–132 (2009)

  21. 21.

    et al. Aerosol imaging with a soft x-ray free electron laser. Aerosol Sci. Technol. 44, i–. vi (2010)

  22. 22.

    et al. Single mimivirus particles intercepted and imaged with an x-ray laser. Nature 470, 78–81 (2011)

  23. 23.

    et al. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology. J. Phys. B 43, 194013 (2010)

  24. 24.

    et al. Single-shot femtosecond x-ray diffraction from randomly oriented ellipsoidal nanoparticles. Phys. Rev. Spec. Topics 13, 094701 (2010)

  25. 25.

    et al. Single particle x-ray diffractive imaging. Nano Lett. 8, 310–316 (2008)

  26. 26.

    et al. Complex colloidal microclusters from aerosol droplets. Langmuir 23, 12079–12085 (2007)

  27. 27.

    & Scattering from fractals. J. Appl. Cryst. 20, 61–78 (1987)

  28. 28.

    Fractal aggregates. Adv. Colloid Interf. Sci. 28, 249–331 (1988)

  29. 29.

    Relaxed averaged alternating reflections for diffraction imaging. Inverse Probl. 21, 37–50 (2005)

  30. 30.

    et al. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101(R) (2003)

  31. 31.

    et al. Reconstruction of the support of an object from the support of its autocorrelation. J. Opt. Soc. Am. 72, 610–624 (1982)

Download references


Experiments were carried out at the Linac Coherent Light Source, a national user facility operated by Stanford University on behalf of the US Department of Energy (DOE), Office of Basic Energy Sciences. N.D.L., C.Y.H., R.G.S., P.B. and M.J.B. were supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy. M.J.B. acknowledges support by the SLAC Laboratory Directed Research and Development Program. We acknowledge support from the Max Planck Society for funding the development and operation of the CAMP instrument within the ASG at CFEL, the Hamburg Ministry of Science and Research and Joachim Herz Stiftung as part of the Hamburg Initiative for Excellence in Research (LEXI) and the Hamburg School for Structure and Dynamics in Infection, CBST at UC under Cooperative Agreement number PHY 0120999. Lawrence Livermore National Laboratory (LLNL) is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Work by LLNL has been supported, in part, by University of California Laboratory Fee grant 09-LR-05-118036-BARA. We also acknowledge support from the Swedish Research Council, the European Research Council, Knut och Alice Wallenbergs Stiftelse, and the DFG Cluster of Excellence at the Munich Centre for Advanced Photonics. We acknowledge the staff of the LCLS for their support in carrying out these experiments. The Max Planck Advanced Study Group at CFEL acknowledges technical support by R. Andritschke, K. Gärtner, O. Hälker, S. Herrmann, A. Hömke, Ch. Kaiser, K.-U. Kühnel, W. Leitenberger, D. Miessner, D. Pietschner, M. Porro, R. Richter, G. Schaller, C. Schmidt, F. Schopper, C.-D. Schröter, Ch. Thamm, A. Walenta, A. Ziegler and H. Gorke. N.D.L. thanks M. J. Berg, G. Simpson, G. Williams and J. Hajdu for their critique, and G. M. Stewart for rendering the experiment’s schematic.

Author information


  1. PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

    • N. D. Loh
    • , C. Y. Hampton
    • , D. Starodub
    • , R. G. Sierra
    • , P. Bucksbaum
    • , K. O. Hodgson
    •  & M. J. Bogan
  2. Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607 Hamburg, Germany

    • A. V. Martin
    • , A. Barty
    • , A. Aquila
    • , J. Schulz
    • , M. Liang
    • , L. Gumprecht
    • , H. Fleckenstein
    • , K. Nass
    • , T. A. White
    •  & H. N. Chapman
  3. European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany

    • A. Aquila
    • , J. Schulz
    •  & N. Coppola
  4. Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany

    • L. Lomb
    • , J. Steinbrener
    • , R. L. Shoeman
    • , S. Kassemeyer
    • , D. Rolles
    • , L. Foucar
    •  & I. Schlichting
  5. Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

    • C. Bostedt
    •  & J. Bozek
  6. Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestraße 85, 22607 Hamburg, Germany

    • S. W. Epp
    • , B. Erk
    • , D. Rolles
    • , A. Rudenko
    • , B. Rudek
    • , L. Foucar
    • , J. Ullrich
    •  & I. Schlichting
  7. Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

    • S. W. Epp
    • , B. Erk
    • , A. Rudenko
    • , B. Rudek
    •  & J. Ullrich
  8. PNSensor GmbH, Otto-Hahn-Ring 6, 81739 München, Germany

    • R. Hartmann
    • , P. Holl
    • , C. Reich
    • , A. Hartmann
    •  & H. Soltau
  9. Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany

    • N. Kimmel
    • , G. Weidenspointner
    • , G. Hauser
    •  & L. Strüder
  10. Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85741 Garching, Germany

    • N. Kimmel
    • , G. Weidenspointner
    • , G. Hauser
    •  & L. Strüder
  11. Sincrotrone Trieste, Microscopy Section, 34149 Trieste, Italy

    • E. Pedersoli
  12. Lawrence Livermore National Laboratory, 7000 East Avenue, Mail Stop L-211, Livermore, California 94551, USA

    • M. S. Hunter
    • , G. R. Farquar
    • , W. H. Benner
    • , S. P. Hau-Riege
    •  & M. Frank
  13. Photon Science, DESY, Notkestraße 85, 22607 Hamburg, Germany

    • C. Wunderer
    • , H. Graafsma
    • , H. Hirsemann
    • , S. Bajt
    •  & M. Barthelmess
  14. National Energy Research Scientific Computing Center (NERSC), 1 Cyclotron Road, Berkeley, California 94720, USA

    • F. R. N. C. Maia
  15. Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden

    • T. Ekeberg
    •  & M. Hantke
  16. University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

    • K. Nass
    •  & H. N. Chapman
  17. Cornell University, Division of Nutritional Sciences, Savage Hall, Ithaca, New York 14853, USA

    • H. J. Tobias
  18. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    • S. Marchesini


  1. Search for N. D. Loh in:

  2. Search for C. Y. Hampton in:

  3. Search for A. V. Martin in:

  4. Search for D. Starodub in:

  5. Search for R. G. Sierra in:

  6. Search for A. Barty in:

  7. Search for A. Aquila in:

  8. Search for J. Schulz in:

  9. Search for L. Lomb in:

  10. Search for J. Steinbrener in:

  11. Search for R. L. Shoeman in:

  12. Search for S. Kassemeyer in:

  13. Search for C. Bostedt in:

  14. Search for J. Bozek in:

  15. Search for S. W. Epp in:

  16. Search for B. Erk in:

  17. Search for R. Hartmann in:

  18. Search for D. Rolles in:

  19. Search for A. Rudenko in:

  20. Search for B. Rudek in:

  21. Search for L. Foucar in:

  22. Search for N. Kimmel in:

  23. Search for G. Weidenspointner in:

  24. Search for G. Hauser in:

  25. Search for P. Holl in:

  26. Search for E. Pedersoli in:

  27. Search for M. Liang in:

  28. Search for M. S. Hunter in:

  29. Search for L. Gumprecht in:

  30. Search for N. Coppola in:

  31. Search for C. Wunderer in:

  32. Search for H. Graafsma in:

  33. Search for F. R. N. C. Maia in:

  34. Search for T. Ekeberg in:

  35. Search for M. Hantke in:

  36. Search for H. Fleckenstein in:

  37. Search for H. Hirsemann in:

  38. Search for K. Nass in:

  39. Search for T. A. White in:

  40. Search for H. J. Tobias in:

  41. Search for G. R. Farquar in:

  42. Search for W. H. Benner in:

  43. Search for S. P. Hau-Riege in:

  44. Search for C. Reich in:

  45. Search for A. Hartmann in:

  46. Search for H. Soltau in:

  47. Search for S. Marchesini in:

  48. Search for S. Bajt in:

  49. Search for M. Barthelmess in:

  50. Search for P. Bucksbaum in:

  51. Search for K. O. Hodgson in:

  52. Search for L. Strüder in:

  53. Search for J. Ullrich in:

  54. Search for M. Frank in:

  55. Search for I. Schlichting in:

  56. Search for H. N. Chapman in:

  57. Search for M. J. Bogan in:


M.J.B. conceived the soot and soot/salt imaging experiments. M.J.B., C.Y.H., D.S., H.N.C., I.S., A.B., W.H.B., S.P.H.-R., S.M., S.B. and M.F. conceived the sphere/nanoparticle imaging experiments. D.S., N.D.L. and M.J.B conceived the fractal dimension determination. C.B. and J.B. built and managed the AMO beamline at LCLS, where the experiments were performed. C.Y.H., A.V.M., D.S., R.G.S., A.B., A.A., J.S., L.L., R.L.S., S.K., S.W.E., B.E., R.H., D.R., A.R., B.R., L.F., N.K., G.W., G.H., P.H., E.P., M.L., M.S.H., L.G., N.C., C.W., H.G., H.F., H.H., K.N., H.J.T., G.R.F., S.B., M.B., L.S., J.U., P.B. and K.O.H. were responsible for critical preparation leading up to and immediately after the experiment. C.Y.H., L.L., R.L.S., R.G.S., M.L., E.P., H.J.T. and M.J.B. were responsible for sample delivery. A.R., B.R., D.R. and L.F. developed and operated the mass spectrometer. M.L. took the electron micrographs (Supplementary Figs 2 and 3). M.J.B. and R.G.S. characterized and operated the MOUDI particle filter. The CAMP instrument was the responsibility of S.W.E., R.H., D.R., A.R., L.F., N.K., P.H., B.R., B.E., A.H., C.R., G.W., G.H., H.H., C.W., H.G., H.S., J.U., I.S. and L.S., who jointly designed and set up the instrument and/or developed and operated the pnCCD detectors. Efforts to calibrate, align the imaging apparatus and collect data were shared among C.Y.H., D.S., R.G.S., A.B., A.A., J.S., L.L., R.L.S., S.K., C.B., J.B., S.W.E., B.E., R.H., D.R., A.R., B.R., L.F., E.P., M.L., L.G., N.C., H.H., K.N., H.J.T., J.U., M.F., I.S., H.N.C. and M.J.B.. S.K., A.B., K.N. and A.V.M. provided crucial preliminary analysis of the data during the experiment. A.B., A.V.M., A.A. and S.K. processed and analysed the raw data, using software developed by L.F., S.K., A.B., T.A.W. and F.R.N.C.M.; M.J.B., N.D.L., D.S., C.Y.H., A.V.M., A.B., A.A., L.L., J.S., F.R.N.C.M., T.E. and M.H. developed the ideas for analyses. A.V.M. did the phase retrieval reconstructions. N.D.L. and D.S. contributed equally to the fractal morphology and calibration. N.D.L., M.J.B., D.S., A.B., A.V.M., D.R. and I.S. wrote the paper, with input from all co-authors.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to N. D. Loh or M. J. Bogan.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Figures 1-4, Supplementary Methods and additional references.

About this article

Publication history







By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.