Visualizing heavy fermions emerging in a quantum critical Kondo lattice


In solids containing elements with f orbitals, the interaction between f-electron spins and those of itinerant electrons leads to the development of low-energy fermionic excitations with a heavy effective mass. These excitations are fundamental to the appearance of unconventional superconductivity and non-Fermi-liquid behaviour observed in actinide- and lanthanide-based compounds. Here we use spectroscopic mapping with the scanning tunnelling microscope to detect the emergence of heavy excitations with lowering of temperature in a prototypical family of cerium-based heavy-fermion compounds. We demonstrate the sensitivity of the tunnelling process to the composite nature of these heavy quasiparticles, which arises from quantum entanglement of itinerant conduction and f electrons. Scattering and interference of the composite quasiparticles is used to resolve their energy–momentum structure and to extract their mass enhancement, which develops with decreasing temperature. The lifetime of the emergent heavy quasiparticles reveals signatures of enhanced scattering and their spectral lineshape shows evidence of energy–temperature scaling. These findings demonstrate that proximity to a quantum critical point results in critical damping of the emergent heavy excitation of our Kondo lattice system.

Figure 1: Tunnelling into a Kondo lattice.
Figure 2: STM topographies on CeCoIn5.
Figure 3: Composite nature of heavy-fermion excitations.
Figure 4: Spectroscopic mapping of quasiparticle interference (QPI).
Figure 5: Visualizing quasiparticle mass enhancement.
Figure 6: Signatures of quantum criticality.


  1. 1

    Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 124, 41–53 (1961)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  2. 2

    Shiba, H. &. Kuramoto, Y. (eds) Kondo effect — 40 years after the discovery. J. Phys. Soc. Jpn 74, 1–238 (2005)

    Google Scholar 

  3. 3

    Schroder, A. et al. Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351–355 (2000)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Coleman, P., Pépin, C., Si, Q. & Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Condens. Matter 13, 723–738 (2001)

    ADS  Article  Google Scholar 

  5. 5

    Si, Q., Rabello, S., Ingersent, K. & Smith, J. L. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Senthil, T., Sachdev, S. & Vojta, M. Fractionalized Fermi liquids. Phys. Rev. Lett. 90, 216403 (2003)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Park, T. et al. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5 . Nature 440, 65–68 (2006)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nature Phys. 4, 186–197 (2008)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Pfleiderer, C. Superconducting phases of f-electron compounds. Rev. Mod. Phys. 81, 1551–1624 (2009)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Palstra, T. T. M. et al. Superconducting and magnetic transitions in the heavy-fermion system URu2Si2 . Phys. Rev. Lett. 55, 2727–2730 (1985)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Stewart, G. Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Fisk, Z., Sarrao, J. L., Smith, J. L. & Thompson, J. D. The physics and chemistry of heavy fermions. Proc. Natl Acad. Sci. USA 92, 6663–6667 (1995)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Steglich, F. et al. Classification of strongly correlated f-electron systems. J. Low Temp. Phys. 99, 267–281 (1995)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Yang, Y.-f., Fisk, Z., Lee, H.-O., Thompson, J. D. & Pines, D. Scaling the Kondo lattice. Nature 454, 611–613 (2008)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Si, Q. & Steglich, F. Heavy fermions and quantum phase transitions. Science 329, 1161–1166 (2010)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Anderson, P. W. Fermi sea of heavy electrons (a Kondo lattice) is never a Fermi liquid. Phys. Rev. Lett. 104, 176403 (2010)

    ADS  Article  Google Scholar 

  17. 17

    Coleman, P. in Handbook of Magnetism and Advanced Magnetic Materials Vol. 1 (eds Kronmeuller, H. & Parkin, S. ) 45 (Wiley and Sons, 2007)

    Google Scholar 

  18. 18

    Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 1999)

    Google Scholar 

  19. 19

    Varma, C. M. Mixed-valence compounds. Rev. Mod. Phys. 48, 219–238 (1976)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Grenzebach, C., Anders, F. B., Czycholl, G. & Pruschke, T. Transport properties of heavy-fermion systems. Phys. Rev. B 74, 195119 (2006)

    ADS  Article  Google Scholar 

  21. 21

    Shim, J. H., Haule, K. & Kotliar, G. Modeling the localized-to-itinerant electronic transition in the heavy fermion system CeIrIn5 . Science 318, 1615–1617 (2007)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Martin, L. C., Bercx, M. & Assaad, F. F. Fermi surface topology of the two-dimensional Kondo lattice model: dynamical cluster approximation approach. Phys. Rev. B 82, 245105 (2010)

    ADS  Article  Google Scholar 

  23. 23

    Jacob, D., Haule, K. & Kotliar, G. Dynamical mean-field theory for molecular electronics: electronic structure and transport properties. Phys. Rev. B 82, 195115 (2010)

    ADS  Article  Google Scholar 

  24. 24

    Benlagra, A., Pruschke, T. & Vojta, M. Finite-temperature spectra and quasiparticle interference in Kondo lattices: from light electrons to coherent heavy quasiparticles. Phys. Rev. B 84, 195141 (2011)

    ADS  Article  Google Scholar 

  25. 25

    Yang, Y.-f. Fano effect in the point contact spectroscopy of heavy-electron materials. Phys. Rev. B 79, 241107 (2009)

    ADS  Article  Google Scholar 

  26. 26

    Maltseva, M., Dzero, M. & Coleman, P. Electron cotunneling into a Kondo lattice. Phys. Rev. Lett. 103, 206402 (2009)

    ADS  Article  Google Scholar 

  27. 27

    Figgins, J. & Morr, D. K. Differential conductance and quantum interference in Kondo systems. Phys. Rev. Lett. 104, 187202 (2010)

    ADS  Article  Google Scholar 

  28. 28

    Wölfle, P., Dubi, Y. & Balatsky, A. V. Tunneling into clean heavy fermion compounds: origin of the Fano line shape. Phys. Rev. Lett. 105, 246401 (2010)

    ADS  Article  Google Scholar 

  29. 29

    Park, W. K., Sarrao, J. L., Thompson, J. D. & Greene, L. H. Andreev reflection in heavy-fermion superconductors and order parameter symmetry in CeCoIn5 . Phys. Rev. Lett. 100, 177001 (2008)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Aynajian, P. et al. Visualizing the formation of the Kondo lattice and the hidden order in URu2Si2 . Proc. Natl Acad. Sci. USA 107, 10383–10388 (2010)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Schmidt, A. R. et al. Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2 . Nature 465, 570–576 (2010)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Ernst, S. et al. Emerging local Kondo screening and spatial coherence in the heavy-fermion metal YbRh2Si2 . Nature 474, 362–366 (2011)

    CAS  Article  Google Scholar 

  33. 33

    Sidorov, V. A. et al. Superconductivity and quantum criticality in CeCoIn5 . Phys. Rev. Lett. 89, 157004 (2002)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Paglione, J. et al. Field-induced quantum critical point in CeCoIn5 . Phys. Rev. Lett. 91, 246405 (2003)

    ADS  Article  Google Scholar 

  35. 35

    Paglione, J., Sayles, T. A., Ho, P. C., Jeffries, J. R. & Maple, M. B. Incoherent non-Fermi-liquid scattering in a Kondo lattice. Nature Phys. 3, 703–706 (2007)

    ADS  CAS  Article  Google Scholar 

  36. 36

    Urbano, R. R. et al. Interacting antiferromagnetic droplets in quantum critical CeCoIn5 . Phys. Rev. Lett. 99, 146402 (2007)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Hegger, H. et al. Pressure-induced superconductivity in quasi-2D CeRhIn5 . Phys. Rev. Lett. 84, 4986–4989 (2000)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Petrovic, C. et al. Heavy-fermion superconductivity in CeCoIn5 at 2.3 K. J. Phys. Condens. Matter 13, 337–342 (2001)

    Article  Google Scholar 

  39. 39

    Hall, D. et al. Fermi surface of the heavy-fermion superconductor CeCoIn5: the de Haas–van Alphen effect in the normal state. Phys. Rev. B 64, 212508 (2001)

    ADS  Article  Google Scholar 

  40. 40

    Shishido, H., Settai, R., Hashimoto, S., Inada, Y. & Ōnuki, Y. De Hass van Alphen effect of CeRhIn5 and CeCoIn5 under pressure. J. Magn. Magn. Mater. 272–276, 225–226 (2004)

    ADS  Article  Google Scholar 

  41. 41

    Moshopoulou, E. G. et al. Comparison of the crystal structure of the heavy-fermion materials CeCoIn5, CeRhIn5 and CeIrIn5 . Appl. Phys. A 74, s895–s897 (2002)

    CAS  Article  Google Scholar 

  42. 42

    Booth, C. H. et al. Local structure and site occupancy of Cd and Hg substitutions in CeTIn5 (T = Co, Rh, and Ir). Phys. Rev. B 79, 144519 (2009)

    ADS  Article  Google Scholar 

  43. 43

    Fujimori, S. et al. Direct observation of a quasiparticle band in CeIrIn5: an angle-resolved photoemission spectroscopy study. Phys. Rev. B 73, 224517 (2006)

    ADS  Article  Google Scholar 

  44. 44

    Ehm, D. et al. High-resolution photoemission study on low-TK Ce systems: Kondo resonance, crystal field structures, and their temperature dependence. Phys. Rev. B 76, 045117 (2007)

    ADS  Article  Google Scholar 

  45. 45

    Koitzsch, A. et al. Hybridization effects in CeCoIn5 observed by angle-resolved photoemission. Phys. Rev. B 77, 155128 (2008)

    ADS  Article  Google Scholar 

  46. 46

    Oppeneer, P. M. et al. Fermi surface changes due to localized–delocalized f-state transitions in Ce-115 and Pu-115 compounds. J. Magn. Magn. Mater. 310, 1684–1690 (2007)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Sachdev, S. & Ye, J. Universal quantum-critical dynamics of two-dimensional antiferromagnets. Phys. Rev. Lett. 69, 2411–2414 (1992)

    ADS  CAS  Article  Google Scholar 

  48. 48

    Senthil, T. Critical Fermi surfaces and non-Fermi liquid metals. Phys. Rev. B 78, 035103 (2008)

    ADS  Article  Google Scholar 

  49. 49

    Aronson, M. C. et al. Non-Fermi-liquid scaling of the magnetic response in UCu5-xPdx (x = 1,1.5). Phys. Rev. Lett. 75, 725–728 (1995)

    ADS  CAS  Article  Google Scholar 

  50. 50

    Schröder, A., Aeppli, G., Bucher, E., Ramazashvili, R. & Coleman, P. Scaling of magnetic fluctuations near a quantum phase transition. Phys. Rev. Lett. 80, 5623–5626 (1998)

    ADS  Article  Google Scholar 

Download references


We acknowledge discussions with P. W. Anderson, E. Abrahams, P. Coleman, N. Curro, D. Pines, D. Morr, T. Senthil, S. Sachdev, M. Vojta, C. Varma and C. V. Parker. Work at Princeton University was primarily supported by a grant from the DOE Office of Basic Energy Sciences (DE-FG02-07ER46419). The instrumentation and infrastructure at the Princeton Nanoscale Microscopy Laboratory are also supported by grants from the NSF-DMR1104612 and NSF-MRSEC programmes through the Princeton Center for Complex Materials (DMR-0819860), and the W.M. Keck foundation as well as the Eric and Linda Schmidt Transformative fund at Princeton. P.A. acknowledges postdoctoral fellowship support through the Princeton Center for Complex Materials funded by the NSF-MRSEC programme. Work at Los Alamos National Laboratory was performed under the auspices of the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering. Z.F. acknowledges support from NSF-DMR-0801253.

Author information




P.A., E.H.d.S.N. and A.G. performed the STM measurements. P.A. and E.H.d.S.N. analysed the data. E.H.d.S.N. and P.A. performed the theoretical calculations. R.E.B., J.D.T., Z.F. and E.D.B. synthesized and characterized the materials. A.Y., P.A. and E.H.d.S.N. wrote the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Ali Yazdani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-14 and additional references. (PDF 1273 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aynajian, P., da Silva Neto, E., Gyenis, A. et al. Visualizing heavy fermions emerging in a quantum critical Kondo lattice. Nature 486, 201–206 (2012).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing