Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The diet of Australopithecus sediba

Subjects

Abstract

Specimens of Australopithecus sediba from the site of Malapa, South Africa (dating from approximately 2 million years (Myr) ago)1 present a mix of primitive and derived traits that align the taxon with other Australopithecus species and with early Homo2. Although much of the available cranial and postcranial material of Au. sediba has been described3,4,5,6, its feeding ecology has not been investigated. Here we present results from the first extraction of plant phytoliths from dental calculus of an early hominin. We also consider stable carbon isotope and dental microwear texture data for Au. sediba in light of new palaeoenvironmental evidence. The two individuals examined consumed an almost exclusive C3 diet that probably included harder foods, and both dicotyledons (for example, tree leaves, fruits, wood and bark) and monocotyledons (for example, grasses and sedges). Like Ardipithecus ramidus (approximately 4.4 Myr ago) and modern savanna chimpanzees, Au. sediba consumed C3 foods in preference to widely available C4 resources. The inferred consumption of C3 monocotyledons, and wood or bark, increases the known variety of early hominin foods. The overall dietary pattern of these two individuals contrasts with available data for other hominins in the region and elsewhere.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: δ 13 C values for early hominins.
Figure 2: Dental microwear patterns for individuals MH1 and MH2 compared to those of other fossil hominins.
Figure 3

Similar content being viewed by others

References

  1. Pickering, R. et al. Australopithecus sediba at 1.977 Ma and implications for the origins of the genus Homo . Science 333, 1421–1423 (2011)

    Article  ADS  CAS  Google Scholar 

  2. Berger, L. R. et al. Australopithecus sediba: a new species of Homo-like australopith from South Africa. Science 328, 195–204 (2010)

    Article  ADS  CAS  Google Scholar 

  3. Carlson, K. J. et al. The endocast of MH1, Australopithecus sediba . Science 333, 1402–1407 (2011)

    Article  ADS  CAS  Google Scholar 

  4. Kibii, J. M. et al. A partial pelvis of Australopithecus sediba . Science 333, 1407–1411 (2011)

    Article  ADS  CAS  Google Scholar 

  5. Kivell, T. L., Kibii, J. M., Churchill, S. E., Schmid, P. & Berger, L. R. Australopithecus sediba hand demonstrates mosaic evolution of locomotor and manipulative abilities. Science 333, 1411–1417 (2011)

    Article  ADS  CAS  Google Scholar 

  6. Zipfel, B. et al. The foot and ankle of Australopithecus sediba . Science 333, 1417–1420 (2011)

    Article  ADS  CAS  Google Scholar 

  7. Vogel, J. C. Isotopic assessment of the dietary habits of ungulates. S. Afr. J. Sci. 74, 298–301 (1978)

    Google Scholar 

  8. Schoeninger, M. J., Moore, J. & Sept, J. M. Subsistence strategies of two “savanna” chimpanzee populations: the stable isotope evidence. Am. J. Primatol. 49, 297–314 (1999)

    Article  CAS  Google Scholar 

  9. Sponheimer, M. et al. Do “savanna” chimpanzees consume C4 resources? J. Hum. Evol. 51, 128–133 (2006)

    Article  CAS  Google Scholar 

  10. Lee-Thorp, J., Thackeray, F. & van der Merwe, N. J. The hunters and the hunted revisited. J. Hum. Evol. 39, 565–576 (2000)

    Article  CAS  Google Scholar 

  11. van der Merwe, N. J., Thackeray, J. F., Lee-Thorp, J. A. & Luyt, J. The carbon isotope ecology and diet of Australopithecus africanus at Sterkfontein, South Africa. J. Hum. Evol. 44, 581–597 (2003)

    Article  Google Scholar 

  12. van der Merwe, N. J., Masao, F. T. & Bamford, M. K. Isotopic evidence for contrasting diets of early hominins Homo habilis and Australopithecus boisei of Tanzania. S. Afr. J. Sci. 104, 153–155 (2008)

    CAS  Google Scholar 

  13. Ungar, P. S. Mammal Teeth: Origin, Evolution, and Diversity (Johns Hopkins Univ. Press, 2010)

    Google Scholar 

  14. Scott, R. S. et al. Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature 436, 693–695 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Grine, F. E., Ungar, P. S., Teaford, M. F. & El-Zaatari, S. Molar microwear in Praeanthropus afarensis: evidence for dietary stasis through time and under diverse paleoecological conditions. J. Hum. Evol. 51, 297–319 (2006)

    Article  Google Scholar 

  16. Pontzer, H., Scott, J. R., Lordkipanidze, D. & Ungar, P. S. Dental microwear texture analysis and diet in the Dmanisi hominins. J. Hum. Evol. 61, 683–687 (2011)

    Article  Google Scholar 

  17. Ungar, P. S., Scott, R. S., Grine, F. E. & Teaford, M. F. Molar microwear textures and the diets of Australopithecus anamensis and Australopithecus afarensis . Phil. Trans. R. Soc. B 365, 3345–3354 (2010)

    Article  Google Scholar 

  18. Piperno, D. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists (AltaMira, 2006)

    Google Scholar 

  19. Henry, A. G., Brooks, A. S. & Piperno, D. R. Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proc. Natl Acad. Sci. USA 108, 486–491 (2011)

    Article  ADS  CAS  Google Scholar 

  20. Bamford, M. et al. Botanical remains from a coprolite from the Pleistocene hominin site of Malapa, Sterkfontein Valley, South Africa. Palaeontol. Afr. 45, 23–28 (2010)

    Google Scholar 

  21. Dirks, P. H. et al. Geological setting and age of Australopithecus sediba from southern Africa. Science 328, 205 (2010)

    Article  ADS  CAS  Google Scholar 

  22. Passey, B. H. & Cerling, T. E. In situ stable isotope analysis (δ13C, δ18O) of very small teeth using laser ablation GC/IRMS. Chem. Geol. 235, 238–249 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Lee-Thorp, J. A., van der Merwe, N. J. & Brain, C. Diet of Australopithecus robustus at Swartkrans from stable carbon isotopic analysis. J. Hum. Evol. 27, 361–372 (1994)

    Article  Google Scholar 

  24. Sponheimer, M. et al. Hominins, sedges, and termites: New carbon isotope data from the Sterkfontein valley and Kruger National Park. J. Hum. Evol. 48, 301–312 (2005)

    Article  Google Scholar 

  25. Cerling, T. E. et al. Diet of Paranthropus boisei in the early Pleistocene of East Africa. Proc. Natl Acad. Sci. USA 108, 9337–9347 (2011)

    Article  ADS  CAS  Google Scholar 

  26. White, T. D. et al. Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus . Science 326, 87–93 (2009)

    ADS  CAS  PubMed  Google Scholar 

  27. Smith, C. C., Morgan, M. E. & Pilbeam, D. Isotopic ecology and dietary profiles of Liberian chimpanzees. J. Hum. Evol. 58, 43–55 (2010)

    Article  Google Scholar 

  28. Lambert, J. E., Chapman, C. A., Wrangham, R. W. & Conklin-Brittain, N. L. Hardness of cercopithecine foods: implications for the critical function of enamel thickness in exploiting fallback foods. Am. J. Phys. Anthropol. 125, 363–368 (2004)

    Article  Google Scholar 

  29. Rogers, M. E. et al. Current Primatology Volume 1: Ecology and Evolution (eds Thierry, B., Anderson, J. R., Roeder, J. J. & Herrenschmidt, N. ) 37–43 (Universite Louis Pasteur, 1994)

    Google Scholar 

  30. Ungar, P. S. & Sponheimer, M. The diets of early hominins. Science 334, 190–193 (2011)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

A.G.H. was funded in part by the US National Science Foundation (NSF), the Smithsonian Institution, the Malapa Project at the Institute for Human Evolution of the University of the Witwatersrand, and the Max Planck Society. P.S.U. was funded by the US Department of State Fulbright Scholarship Program, the Malapa Project and the US NSF. B.H.P. was supported by the US NSF. M.S. was funded by the US NSF, the Leakey Foundation and the University of Colorado Dean's Fund for Excellence. The phytolith reference material and processing of M.B. was funded by the Palaeontological Scientific Trust, South Africa, and the South African Department of Science and Technology. P.S. was supported by the Wenner-Gren Foundation. D.J.d.R. was funded by the Ray A. Rothrock Fellowship and the International Research Travel Assistance Grant of Texas A&M University. Extensive funding for the Malapa Project comes from the Gauteng Provincial Government, the South African Department of Science and Technology, the South Africa National Research Foundation, the University of the Witwatersrand, and many private and public donors. We thank K. Krueger for running the microwear texture data through ToothFrax and SFrax, and J. Leichliter and O. Paine for their work with the Malapa roost rodents.

Author information

Authors and Affiliations

Authors

Contributions

A.G.H., P.S.U., M.S., D.J.d.R. and L.B. conceived the project. A.G.H. collected and processed sediment and calculus samples. P.S.U. performed the dental microwear analysis. B.H.P., M.S. and P.S. performed isotopic analyses. L.R. identified grass phytoliths in the calculus and examined grass silica short cells (GSSCs) in Facies D sediment sample. M.B. identified the non-grass phytoliths in the calculus and analysed sediment samples. All authors contributed to the paper.

Corresponding author

Correspondence to Amanda G. Henry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary References, Supplementary Tables 1-5 and Supplementary Figures 1-6. (PDF 1187 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henry, A., Ungar, P., Passey, B. et al. The diet of Australopithecus sediba. Nature 487, 90–93 (2012). https://doi.org/10.1038/nature11185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11185

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing