Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electronic nematicity above the structural and superconducting transition in BaFe2(As1−xP x )2

Abstract

Electronic nematicity, a unidirectional self-organized state that breaks the rotational symmetry of the underlying lattice1,2, has been observed in the iron pnictide3,4,5,6,7 and copper oxide8,9,10,11 high-temperature superconductors. Whether nematicity plays an equally important role in these two systems is highly controversial. In iron pnictides, the nematicity has usually been associated with the tetragonal-to-orthorhombic structural transition at temperature Ts. Although recent experiments3,4,5,6,7 have provided hints of nematicity, they were performed either in the low-temperature orthorhombic phase3,5 or in the tetragonal phase under uniaxial strain4,6,7, both of which break the 90° rotational C4 symmetry. Therefore, the question remains open whether the nematicity can exist above Ts without an external driving force. Here we report magnetic torque measurements of the isovalent-doping system BaFe2(As1−xP x )2, showing that the nematicity develops well above Ts and, moreover, persists to the non-magnetic superconducting regime, resulting in a phase diagram similar to the pseudogap phase diagram of the copper oxides8,12. By combining these results with synchrotron X-ray measurements, we identify two distinct temperatures—one at T*, signifying a true nematic transition, and the other at Ts (<T*), which we show not to be a true phase transition, but rather what we refer to as a ‘meta-nematic transition’, in analogy to the well-known meta-magnetic transition in the theory of magnetism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Torque magnetometry and the doping–temperature phase diagram of BaFe2(As1− xPx )2.
Figure 2: Nematic and meta-nematic transitions.
Figure 3: Temperature dependence of the nematic order parameter and lattice distortion.

Similar content being viewed by others

References

  1. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010)

    Article  ADS  CAS  Google Scholar 

  3. Zhao, J. et al. Spin waves and magnetic exchange interactions in CaFe2As2 . Nature Phys. 5, 555–560 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Yi, M. et al. Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1−x Co x )2As2 above the spin density wave transition. Proc. Natl Acad. Sci. USA 108, 6878–6883 (2011)

    Article  ADS  CAS  Google Scholar 

  5. Chuang, T.-M. et al. Nematic electronic structure in the “parent” state of the iron-based superconductor Ca(Fe1−x Co x )2As2 . Science 327, 181–184 (2010)

    Article  ADS  CAS  Google Scholar 

  6. Chu, J.-H. et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science 329, 824–826 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Tanatar, M. et al. Uniaxial-strain mechanical detwinning of CaFe2As2 and BaFe2As2 crystals: optical and transport study. Phys. Rev. B 81, 184508 (2010)

    Article  ADS  Google Scholar 

  8. Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-T c copper-oxide pseudogap states. Nature 466, 347–351 (2010)

    Article  ADS  CAS  Google Scholar 

  9. Hinkov, V. et al. Electronic liquid crystal state in the high-temperature superconductor YBa2Cu3O6. 45 . Science 319, 597–600 (2008)

    Article  CAS  Google Scholar 

  10. Ando, Y., Segawa, K., Komiya, S. & Lavrov, A. N. Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002)

    Article  ADS  Google Scholar 

  11. Daou, R. et al. Broken rotational symmetry in the pseudogap phase of a high-T c superconductor. Nature 463, 519–522 (2010)

    Article  ADS  CAS  Google Scholar 

  12. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Okazaki, R. et al. Rotational symmetry breaking in the hidden-order phase of URu2Si2 . Science 331, 439–442 (2011)

    Article  ADS  CAS  Google Scholar 

  14. Kasahara, S. et al. Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe2(As1−x P x )2 superconductors. Phys. Rev. B 81, 184519 (2010)

    Article  ADS  Google Scholar 

  15. Nakai, Y. et al. Unconventional superconductivity and antiferromagnetic quantum critical behavior in the isovalent-doped BaFe2(As1−x P x )2 . Phys. Rev. Lett. 105, 107003 (2010)

    Article  ADS  CAS  Google Scholar 

  16. Shishido, H. et al. Evolution of the Fermi surface of BaFe2(As1−x P x )2 on entering the superconducting dome. Phys. Rev. Lett. 104, 057008 (2010)

    Article  ADS  CAS  Google Scholar 

  17. Hashimoto, K. et al. Line nodes in the energy gap of superconducting BaFe2(As1−x P x )2 single crystals as seen via penetration depth and thermal conductivity. Phys. Rev. B 81, 220501(R) (2010)

    Article  ADS  Google Scholar 

  18. Böhmer, A. E. et al. Thermodynamic phase diagram and phase competition in BaFe2(As1−x P x )2 studied by thermal expansion. Preprint at http://arxiv.org/abs/1203.2119 (2012)

  19. Inoue, Y., Yamakawa, Y. & Kontani, H. Impurity-induced electronic nematic state in iron-pnictide superconductors. Preprint at 〈http://arxiv.org/abs/1110.2401〉 (2011)

  20. Martinelli, A. et al. Retention of the tetragonal to orthorhombic structural transition in F-substituted SmFeAsO: a new phase diagram for SmFeAs(O1−x F x ). Phys. Rev. Lett. 106, 227001 (2011)

    Article  ADS  CAS  Google Scholar 

  21. Fang, C., Yao, H., Tsai, W.-F., Hu, J. & Kivelson, S. A. Theory of electron nematic order in LaFeAsO. Phys. Rev. B 77, 224509 (2008)

    Article  ADS  Google Scholar 

  22. Xu, C., Müller, M. & Sachdev, S. Ising and spin orders in the iron-based superconductors. Phys. Rev. B 78, 020501(R) (2008)

    Article  ADS  Google Scholar 

  23. Fernandes, R. M. et al. Effects of nematic fluctuations on the elastic properties of iron arsenide superconductors. Phys. Rev. Lett. 105, 157003 (2010)

    Article  ADS  CAS  Google Scholar 

  24. Fernandes, R. M., Chubukov, A. V., Knolle, J., Eremin, I. & Schmalian, J. Preemptive nematic order, pseudogap, and orbital order in the iron pnictides. Phys. Rev. B 85, 024534 (2012)

    Article  ADS  Google Scholar 

  25. Singh, R. R. P. Exchange constants and neutron spectra of iron pnictide materials. Preprint at http://arxiv.org/abs/0903.4408 (2009)

  26. Lee, C.-C., Yin, W.-G. & Ku, W. Ferro-orbital order and strong magnetic anisotropy in the parent compounds of iron-pnictide superconductors. Phys. Rev. Lett. 103, 267001 (2009)

    Article  ADS  Google Scholar 

  27. Lv, W., Wu, J. & Phillips, P. Orbital ordering induces structural phase transition and the resistivity anomaly in iron pnictides. Phys. Rev. B 80, 224506 (2009)

    Article  ADS  Google Scholar 

  28. Chen, C.-C. et al. Orbital order and spontaneous orthorhombicity in iron pnictides. Phys. Rev. B 82, 100504 (2010)

    Article  ADS  Google Scholar 

  29. Nevidomskyy, A. H. Interplay of orbital and spin ordering in the iron pnictides. Preprint at http://arxiv.org/abs/1104.1747 (2011)

  30. Lang, G. et al. Nanoscale electronic order in iron pnictides. Phys. Rev. Lett. 104, 097001 (2010)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. G. Analytis, A. Q. R. Baron, E. Bascones, A. Carrington, A. V. Chubukov, R. M. Fernandes, I. Fischer, H. Ikeda, H. Kontani, R. Okazaki and J. Schmalian for discussions. This research was supported by a Grant-in-Aid for the Global COE programme ‘The Next Generation of Physics, Spun from Universality and Emergence’ from MEXT of Japan, and by the KAKENHI programme from JSPS. A.H.N. and Y.M. acknowledge the hospitality of the Aspen Center for Physics. The synchrotron radiation experiments were performed at the BL02B1 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI).

Author information

Authors and Affiliations

Authors

Contributions

S.K. and H.J.S. performed magnetic torque measurements. S.K., H.J.S., K.H., S.T., Y. Mizukami, T.S., K.S. and T.F. contributed to the synchrotron X-ray measurements. S.K. grew the single crystals and performed transport measurements. A.H.N. carried out theoretical modelling and calculations. T.S. and Y. Matsuda conceived and designed the project. T.S., A.H.N. and Y. Matsuda wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to T. Shibauchi or Y. Matsuda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-6 and additional references. (PDF 419 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasahara, S., Shi, H., Hashimoto, K. et al. Electronic nematicity above the structural and superconducting transition in BaFe2(As1−xP x )2 . Nature 486, 382–385 (2012). https://doi.org/10.1038/nature11178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11178

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing