Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of remote meta-C–H bonds assisted by an end-on template

Abstract

Functionalization of unactivated carbon–hydrogen (C–H) single bonds is an efficient strategy for rapid generation of complex molecules from simpler ones. However, it is difficult to achieve selectivity when multiple inequivalent C–H bonds are present in the target molecule. The usual approach is to use σ-chelating directing groups, which lead to ortho-selectivity through the formation of a conformationally rigid six- or seven-membered cyclic pre-transition state1,2,3,4,5,6,7,8,9,10,11,12,13,14. Despite the broad utility of this approach, proximity-driven reactivity prevents the activation of remote C–H bonds. Here we report a class of easily removable nitrile-containing templates that direct the activation of distal meta-C–H bonds (more than ten bonds away) of a tethered arene. We attribute this new mode of C–H activation to a weak ‘end-on’ interaction15 between the linear nitrile group and the metal centre. The ‘end-on’ coordination geometry relieves the strain of the cyclophane-like pre-transition state of the meta-C–H activation event. In addition, this template overrides the intrinsic electronic and steric biases as well as ortho-directing effects with two broadly useful classes of arene substrates (toluene derivatives and hydrocinnamic acids).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A template strategy for the activation of distal meta -C–H bonds (more than ten bonds away).
Figure 2: Template-directed meta -selective C–H olefination of toluene derivatives.
Figure 3: Template-directed meta -selective C–H olefination of hydrocinnamic acid derivatives.

Similar content being viewed by others

References

  1. Hartung, C. G. & Snieckus, V. in Modern Arene Chemistry (ed. Astruc, D. ) 330–367 (Wiley, 2004)

    Google Scholar 

  2. Flemming, J. P., Berry, M. B. & Brown, J. M. Sequential ortho-lithiations; the sulfoxide group as a relay to enable meta-substitution. Org. Biomol. Chem. 6, 1215–1221 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. Ryabov, A. D. Cyclopalladated complexes in organic synthesis. Synthesis 233–252 (1985)

    Article  Google Scholar 

  4. Kakiuchi, F. et al. Catalytic addition of aromatic carbon–hydrogen bonds to olefins with the aid of ruthenium complexes. Bull. Chem. Soc. Jpn 68, 62–83 (1995)

    Article  CAS  Google Scholar 

  5. Jun, C.-H., Hong, J.-B. & Lee, D.-Y. Chelation-assisted hydroacylation. Synlett 1–12 (1999)

  6. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C–C bond formation via heteroatom-directed C–H bond activation. Chem. Rev. 110, 624–655 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Daugulis, O., Do, H.-Q. & Shabashov, D. Palladium- and copper-catalyzed arylation of carbon–hydrogen bonds. Acc. Chem. Res. 42, 1074–1086 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Engle, K. M., Mei, T.-S., Wasa, M. & Yu, J.-Q. Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions. Acc. Chem. Res. (2011)

  10. Satoh, T. & Miura, M. Oxidative coupling of aromatic substrates with alkynes and alkenes under rhodium catalysis. Chem. Eur. J. 16, 11212–11222 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. Guimond, N., Gorelsky, S. I. & Fagnou, K. Rhodium(III)-catalyzed heterocycle synthesis using an internal oxidant: improved reactivity and mechanistic studies. J. Am. Chem. Soc. 133, 6449–6457 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. Rakshit, S., Grohmann, C., Besset, T. & Glorius, F. Rh(III)-catalyzed directed C–H olefination using an oxidizing directing group: mild, efficient, and versatile. J. Am. Chem. Soc. 133, 2350–2353 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. Park, S. H., Kim, J. Y. & Chang, S. Rhodium-catalyzed selective olefination of arene esters via C–H bond activation. Org. Lett. 13, 2372–2375 (2011)

    Article  CAS  PubMed  Google Scholar 

  14. Ackermann, L. & Pospech, J. Ruthenium-catalyzed oxidative C–H bond alkenylations in water: expedient synthesis of annulated lactones. Org. Lett. 13, 4153–4155 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. Schwarz, H. Remote functionalization of C–H and C–C bonds by naked transition-metal ions (cosi fan tutte). Acc. Chem. Res. 22, 282–287 (1989)

    Article  CAS  Google Scholar 

  16. Breslow, R. Biomimetic control of chemical selectivity. Acc. Chem. Res. 13, 170–177 (1980)

    Article  CAS  Google Scholar 

  17. Das, S., Incarvito, C. D., Crabtree, R. H. & Brudvig, G. W. Molecular recognition in the selective oxygenation of saturated C–H bonds by a dimanganese catalyst. Science 312, 1941–1943 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Li, J.-J., Giri, R. & Yu, J.-Q. Remote C–H bond functionalization reveals the distance-dependent isotope effect. Tetrahedron 64, 6979–6987 (2008)

    Article  CAS  Google Scholar 

  19. Cho, J.-Y., Tse, M. K., Holmes, D., Maleczka, R. E., Jr & Smith, M. R., III Remarkably selective iridium catalysts for the elaboration of aromatic C–H bonds. Science 295, 305–308 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Ishiyama, T. et al. Mild iridium-catalyzed borylation of arenes. High turnover numbers, room temperature reactions, and isolation of a potential intermediate. J. Am. Chem. Soc. 124, 390–391 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Y.-H., Shi, B.-F. & Yu, J.-Q. Pd(II)-catalyzed olefination of electron-deficient arenes using 2,6-dialkylpyridine ligands. J. Am. Chem. Soc. 131, 5072–5074 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, X., Leow, D. & Yu, J.-Q. Pd(II)-catalyzed para-selective C–H arylation of monosubstituted arenes. J. Am. Chem. Soc. 133, 13864–13867 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ueda, K., Yanagisawa, S., Yamaguchi, J. & Itami, K. A general catalyst for the β-selective C–H bond arylation of thiophenes with iodoarenes. Angew. Chem. Int. Edn 49, 8946–8949 (2010)

    Article  CAS  Google Scholar 

  24. Ye, M., Gao, G.-L. & Yu, J.-Q. Ligand-promoted C-3 selective C–H olefination of pyridines with Pd catalysts. J. Am. Chem. Soc. 133, 6964–6967 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. Saidi, O. et al. Ruthenium-catalyzed meta-sulfonation of 2-phenylpyridines. J. Am. Chem. Soc. 133, 19298–19301 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. Phipps, R. J. & Gaunt, M. J. A meta-selective copper-catalyzed C–H bond arylation. Science 323, 1593–1597 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Duong, H. A., Gilligan, R. E., Cooke, M. L., Phipps, R. J. & Gaunt, M. J. Copper(II)-catalyzed meta-selective direct arylation of α-aryl carbonyl compounds. Angew. Chem. Int. Edn 50, 463–466 (2011)

    Article  CAS  Google Scholar 

  28. Boele, M. D. K. et al. Selective Pd-catalyzed oxidative coupling of anilides with olefins through C−H bond activation at room temperature. J. Am. Chem. Soc. 124, 1586–1587 (2002)

    Article  CAS  PubMed  Google Scholar 

  29. Wang, D.-H., Engle, K. M., Shi, B.-F. & Yu, J.-Q. Ligand-enabled reactivity and selectivity in a synthetically versatile aryl C–H olefination. Science 327, 315–319 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Gürtler, C. & Buchwald, S. L. A phosphane-free catalyst system for the Heck arylation of disubstituted alkenes: application to the synthesis of trisubstituted olefins. Chem. Eur. J. 5, 3107–3112 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

We thank The Scripps Research Institute and the NIH (NIGMS, 1 R01 GM084019-03) for their financial support. We also thank the Agency for Science, Technology and Research (A*STAR) in Singapore for a postdoctoral fellowship (to D.L.).

Author information

Authors and Affiliations

Authors

Contributions

D.L., G.L. and T.-S.M. performed the experiments and analysed the data. D.L., G.L. and J.-Q.Y. designed the templates and developed the reactions. J.-Q.Y. conceived this concept and prepared this manuscript with feedback from D.L. and G.L.

Corresponding author

Correspondence to Jin-Quan Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Data and Tables; see Supplementary Table of Contents for details. (PDF 23248 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leow, D., Li, G., Mei, TS. et al. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012). https://doi.org/10.1038/nature11158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11158

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing