Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services

Abstract

Over the past 16 years, vast plantings of transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have helped to control several major insect pests1,2,3,4,5 and reduce the need for insecticide sprays1,5,6. Because broad-spectrum insecticides kill arthropod natural enemies that provide biological control of pests, the decrease in use of insecticide sprays associated with Bt crops could enhance biocontrol services7,8,9,10,11,12. However, this hypothesis has not been tested in terms of long-term landscape-level impacts10. On the basis of data from 1990 to 2010 at 36 sites in six provinces of northern China, we show here a marked increase in abundance of three types of generalist arthropod predators (ladybirds, lacewings and spiders) and a decreased abundance of aphid pests associated with widespread adoption of Bt cotton and reduced insecticide sprays in this crop. We also found evidence that the predators might provide additional biocontrol services spilling over from Bt cotton fields onto neighbouring crops (maize, peanut and soybean). Our work extends results from general studies evaluating ecological effects of Bt crops1,2,3,4,6,12,13 by demonstrating that such crops can promote biocontrol services in agricultural landscapes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Population densities of predators and aphids on cotton with different management regimes at Langfang experimental station (2001–2011).
Figure 2: Relationships between predator population density and number of insecticide sprays on cotton in northern China (1990–2010).
Figure 3: Population abundance of cotton aphid in northern China (1990–2010) and relationship with predator abundance on cotton.
Figure 4: Relationships between predator abundance on cotton and in three other crops, and between predator and aphid abundances in maize.

Similar content being viewed by others

References

  1. Shelton, A. M., Zhao, J. Z. & Roush, R. T. Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu. Rev. Entomol. 47, 845–881 (2002)

    Article  CAS  Google Scholar 

  2. Carriere, Y. et al. Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton. Proc. Natl Acad. Sci. USA 100, 1519–1523 (2006)

    Article  ADS  Google Scholar 

  3. Wu, K. M., Lu, Y. H., Feng, H. Q., Jiang, Y. Y. & Zhao, J. Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321, 1676–1678 (2008)

    Article  ADS  CAS  Google Scholar 

  4. Hutchison, W. D. et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330, 222–225 (2010)

    Article  ADS  CAS  Google Scholar 

  5. Tabashnik, B. E. et al. Suppressing resistance to Bt cotton with sterile insect releases. Nature Biotechnol. 28, 1304–1307 (2010)

    Article  CAS  Google Scholar 

  6. Cattaneo, M. G. et al. Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proc. Natl Acad. Sci. USA 103, 7571–7576 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000)

    Article  CAS  Google Scholar 

  8. Crowder, D. W., Northfield, T. D., Strand, M. R. & Snyder, W. E. Organic agriculture promotes evenness and natural pest control. Nature 466, 109–112 (2010)

    Article  ADS  CAS  Google Scholar 

  9. Winqvist, C. et al. Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J. Appl. Ecol. 48, 570–579 (2011)

    Article  Google Scholar 

  10. Romeis, J. et al. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nature Biotechnol. 24, 63–71 (2006)

    Article  CAS  Google Scholar 

  11. Bale, J. S., van Lenteren, J. C. & Bigler, F. Biological control and sustainable food production. Phil. Trans. R. Soc. B 363, 761–776 (2008)

    Article  CAS  Google Scholar 

  12. Gatehouse, A. M. R., Ferry, N., Edwards, M. G. & Bell, H. A. Insect-resistant biotech crops and their impacts on beneficial arthropods. Phil. Trans. R. Soc. B 366, 1438–1452 (2011)

    Article  CAS  Google Scholar 

  13. Wolfenbarger, L. L., Naranjo, S. E., Lundgren, J. G., Bitzer, R. J. & Watrud, L. S. Bt crop effects on functional guilds of non-target arthropods: a meta-analysis. PLoS ONE 3, e2118 10.1371/journal.pone.0002118. (2008)

  14. Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity, and natural pest control. Proc. R. Soc. Lond. B 273, 1715–1727 (2006)

    CAS  Google Scholar 

  15. Losey, J. E. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311–323 (2006)

    Article  Google Scholar 

  16. Chapin, F. S. et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000)

    Article  CAS  Google Scholar 

  17. Desneux, N., Decourtye, A. & Delpuech, J. M. The sublethal effecs of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106 (2007)

    Article  CAS  Google Scholar 

  18. Landis, D. A., Gardiner, M. M., van der Werf, W. & Swinton, S. M. Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes. Proc. Natl Acad. Sci. USA 105, 20552–20557 (2008)

    Article  ADS  CAS  Google Scholar 

  19. James, C. Global Status of Commercialized Biotech/GM crops: 2011 (ISAAA brief no. 43, International Service for the Acquisition of Agri-Biotech Applications, 2011)

    Google Scholar 

  20. Wu, K. M. & Guo, Y. Y. The evolution of cotton pest management practices in China. Annu. Rev. Entomol. 50, 31–52 (2005)

    Article  CAS  Google Scholar 

  21. Lu, Y. H. et al. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328, 1151–1154 (2010)

    Article  ADS  CAS  Google Scholar 

  22. Naranjo, S. E. Long-term assessment of the effects of transgenic Bt cotton on the abundance of nontarget arthropod natural enemies. Environ. Entomol. 34, 1193–1210 (2005)

    Article  Google Scholar 

  23. Ragsdale, D. W., Landis, D. A., Brodeur, J., Heimpel, G. E. & Desneux, N. Ecology and management of the soybean aphid in North America. Annu. Rev. Entomol. 56, 375–399 (2011)

    Article  CAS  Google Scholar 

  24. Hardin, M. R. et al. Arthropod pest resurgence: an overview of potential mechanisms. Crop Prot. 14, 3–18 (1995)

    Article  Google Scholar 

  25. Wu, K. W. & Liu, Q. X. Study on the resurgence caused by insecticides for cotton aphid, Aphis gossypii. Acta Ecol. Sin. 12, 341–347 (1992)

    Google Scholar 

  26. Rao, C. N., Shivankar, V. J. & Singh, S. in Encyclopedia of Pest Management Vol 2 (ed. Pimentel, D.) 597–601 (CRC Press, 2007)

    Google Scholar 

  27. Symondson, W. O. C., Sunderland, K. D. & Greenstone, H. M. Can generalist predators be effective biocontrol agents? Annu. Rev. Entomol. 47, 561–594 (2002)

    Article  CAS  Google Scholar 

  28. Tscharntke, T. et al. Conservation biological control and enemy diversity on a landscape scale. Biol. Control 43, 294–309 (2007)

    Article  Google Scholar 

  29. Romeis, J., Shelton, A. M. & Kennedy, G. G. Integration of Insect-resistant Genetically Modified Crops within IPM Programs (Springer, 2008)

    Book  Google Scholar 

  30. Qu, X. F. Cotton Pest Forecast in China: the Criterion, Zoning and Method (China Scien-tech Press, 1992)

    Google Scholar 

  31. Institute of Plant Protection, Chinese Academy of Agricultural Sciences. Crop Diseases and Pests in China (China Agricultural Press, 1995)

  32. Xu, H. F., Mu, S. M., Xu, Y. Y., Mu, J. Y. & Dong, C. X. On the community structure of major insect pests and natural enemies in summer corn field inlaid in cotton area. Acta Phytophyl. Sin. 27, 199–204 (2000)

    Google Scholar 

  33. Yang, Q. M., Sun, M., Xu, Y. F., Shi, A. J. & Mu, J. Y. On the community structure of major insect pests and natural enemies in summer bean field. J. Shandong Agric. Univ. 35, 217–220 (2004)

    Google Scholar 

  34. Ding, Y. Q. & Cheng, S. L. Preliminary investigation and utilization of natural enemies of aphid in peanut field. J. Peanut Sci. 39, 45–47 (2010)

    Google Scholar 

  35. Wu, K. M. & Guo, Y. Y. Influences of Bacillus thuringiensis Berliner cotton planting on population dynamics of the cotton aphid, Aphis gossypii Glover, in northern China. Environ. Entomol. 32, 312–318 (2003)

    Article  Google Scholar 

  36. Gardiner, M. M. et al. Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Ecol. Appl. 19, 143–154 (2009)

    Article  CAS  Google Scholar 

  37. Miao, J., Wu, K. M., Hopper, K. R. & Li, G. X. Population dynamics of Aphis glycines (Homoptera: Aphididae) and impact of natural enemies in northern China. Environ. Entomol. 36, 840–848 (2007)

    Article  Google Scholar 

  38. Lu, Y. H., Qi, F. J. & Zhang, Y. J. Integrated Management of Diseases and Insect Pests in Cotton (Golden Shield Press, 2010)

    Google Scholar 

Download references

Acknowledgements

We thank the agricultural technicians of the 36 surveyed locations for providing data sets from cotton fields; W. Li and L. Wang for providing the predator exclusion cage data sets; Y. Zhang and C. Li for assistance in making the survey map; H. Yuan for help in preparing the list of insecticides in cotton; and R. Senoussi for advice on data analyses. This work was funded by the Key Project for Breeding Genetically Modified Organisms (grant no. 2011ZX08012-004) and the International Science and Technology Cooperation Project (grant no. 2010DFA32200).

Author information

Authors and Affiliations

Authors

Contributions

K.W., Y.L. and Y.G. designed and performed the experiments. Y.J. performed the surveys. Y.L., K.W. and N.D. analysed the data and shared in the scoping and writing responsibilities.

Corresponding author

Correspondence to Kongming Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-4 and Supplementary Tables 1-4. (PDF 766 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Wu, K., Jiang, Y. et al. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362–365 (2012). https://doi.org/10.1038/nature11153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11153

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing