Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biodiversity loss and its impact on humanity

A Corrigendum to this article was published on 25 July 2012

Abstract

The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world’s nations declared that human actions were dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The form of a typical diversity–function relationship.
Figure 2: Towards a better link between BEF and BES research.

References

  1. Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994)

    Google Scholar 

  2. Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton Univ. Press, 2002)

    Google Scholar 

  3. Power, M. E. et al. Challenges in the quest for keystones. Bioscience 46, 609–620 (1996)

    Google Scholar 

  4. Schulze, E. D. & Mooney, H. A. Biodiversity and Ecosystem Function (Springer, 1993)This influential book established many of the original hypotheses and ideas that laid the foundation for two decades of empirical work in BEF.

    Google Scholar 

  5. Heywood, V. H., ed. Global Biodiversity Assessment (Cambridge Univ. Press, 1995)

  6. Loreau, M. et al. DIVERSITAS Report No. 1: DIVERSITAS Science Plan. (2002)

  7. Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994)This study, along with ref. 8, started a generation of research that examined how biodiversity influences the functioning of ecosystems.

    ADS  Google Scholar 

  8. Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Declining biodiversity can alter the performance of ecosystems. Nature 368, 734–737 (1994)

    ADS  Google Scholar 

  9. Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996)

    ADS  CAS  Google Scholar 

  10. Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999)

    CAS  PubMed  Google Scholar 

  11. Loreau, M., Naeem, S. & Inchausti, P. Biodiversity and Ecosystem Functioning: Synthesis and Perspectives (Oxford Univ. Press, 2002)This book, which followed a 2000 conference in Paris, summarized the first decade of BEF research.

    Google Scholar 

  12. Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011)

    PubMed  Google Scholar 

  13. Daily, G. C. Nature's Services: Societal Dependence on Natural Ecosystems (Island Press, 1997)This book cemented the notion that natural habitats provide essential goods services to society, and it helped to make ecosystem services a mainstream term.

    Google Scholar 

  14. Perrings, C., Folke, C. & Maler, K. G. The ecology and economics of biodiversity loss—The research agenda. Ambio 21, 201–211 (1992)

    Google Scholar 

  15. Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012)

    PubMed  Google Scholar 

  16. Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Biodiversity Synthesis (World Resources Institute, 2005)

  17. Kinzig, A. P., Pacala, S. W. & Tilman, D. The Functional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions (Princeton Univ. Press, 2002)

    Google Scholar 

  18. Loreau, M. From Populations to Ecosystems: Theoretical Foundations for a New Ecological Synthesis (Princeton Univ. Press, 2010)

    Google Scholar 

  19. Tilman, D., Lehman, D. & Thompson, K. Plant diversity and ecosystem productivity: Theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180 (2011)This paper, along with ref. 21, exemplifies how to quantify biodiversity effects on ecosystem functions at large scales in real ecosystems.

    Google Scholar 

  21. Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mora, C. et al. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol. 9, e1000606 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005)This paper was the last published scientific consensus statement on how biodiversity influences ecosystem functions and services.

    Google Scholar 

  24. Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006)This paper, along with ref. 25, was the first to synthesize BEF research via statistical meta-analyses.

    PubMed  Google Scholar 

  25. Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992 (2006)

    ADS  CAS  PubMed  Google Scholar 

  26. Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006)

    ADS  CAS  PubMed  Google Scholar 

  27. Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time due to complementary resource use: A meta-analysis. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stachowicz, J., Bruno, J. F. & Duffy, J. E. Understanding the effects of marine biodiversity on communities and ecosystems. Annu. Rev. Ecol. Evol. Syst. 38, 739–766 (2007)

    Google Scholar 

  29. Bruno, J. F. & Cardinale, B. J. Cascading effects of predator richness. Front. Ecol. Environ 6, 539–546 (2008)

    Google Scholar 

  30. Cardinale, B. J. et al. in Biodiversity and Human Impacts (eds Naeem, S. . et al.) 105–120 (Oxford Univ. Press, 2009)

  31. Schmid, B. et al. in Biodiversity and Human Impacts (eds Naeem, S. . et al.) 14–29 (Oxford Univ. Press, 2009)

  32. Srivastava, D. S. et al. Diversity has stronger top-down than bottom-up effects on decomposition. Ecology 90, 1073–1083 (2009)

    PubMed  Google Scholar 

  33. Quijas, S., Schmid, B. & Balvanera, P. Plant diversity enhances provision of ecosystem services: A new synthesis. Basic Appl. Ecol. 11, 582–593 (2010)

    Google Scholar 

  34. Cadotte, M. W., Cardinale, B. J. & Oakley, T. H. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl Acad. Sci. USA 105, 17012–17017 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships. Ecology 92, 1573–1581 (2011)

    PubMed  Google Scholar 

  36. Wardle, D. A., Bonner, K. I. & Nicholson, K. S. Biodiversity and plant litter: Experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79, 247–258 (1997)

    Google Scholar 

  37. Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2008)

    ADS  Google Scholar 

  38. Cottingham, K. L., Brown, B. L. & Lennon, J. T. Biodiversity may regulate the temporal variability of ecological systems. Ecol. Lett. 4, 72–85 (2001)

    Google Scholar 

  39. Jiang, L. & Pu, Z. C. Different effects of species diversity on temporal stability in single-trophic and multitrophic communities. Am. Nat. 174, 651–659 (2009)

    PubMed  Google Scholar 

  40. Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220 (2010)

    CAS  PubMed  Google Scholar 

  41. Campbell, V., Murphy, G. & Romanuk, T. N. Experimental design and the outcome and interpretation of diversity-stability relations. Oikos 120, 399–408 (2011)

    Google Scholar 

  42. Griffin, J. N. et al. in Biodiversity and Human Impacts (eds Naeem, S. et al.) 78–93 (Oxford Univ. Press, 2009)

  43. Doak, D. F. et al. The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998)

    CAS  PubMed  Google Scholar 

  44. Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009)

    Google Scholar 

  45. Duffy, J. E. Why biodiversity is important to the functioning of real-world ecosystems. Front. Ecol. Environ 7, 437–444 (2009)

    Google Scholar 

  46. Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001)This experiment continues to be one of the largest and longest running biodiversity studies ever conducted.

    ADS  CAS  PubMed  Google Scholar 

  47. Huston, M. A. Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity. Oecologia 110, 449–460 (1997)This paper raised several criticisms against early BEF research, which forced the reconsideration of conclusions with better experiments and more rigorous data analyses.

    ADS  PubMed  Google Scholar 

  48. Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001)

    ADS  CAS  PubMed  Google Scholar 

  49. Carroll, I. T., Cardinale, B. J. & Nisbet, R. M. Niche and fitness differences relate the maintenance of diversity to ecosystem function. Ecology 92, 1157–1165 (2011)

    PubMed  Google Scholar 

  50. Shurin, J. B. et al. A cross-ecosystem comparison of the strength of trophic cascades. Ecol. Lett. 5, 785–791 (2002)

    Google Scholar 

  51. Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011)This paper summarizes how the extinction of large carnivores has an impact on ecosystem processes, emphasizing the urgent need to integrate trophic interactions into BEF and BES research.

    ADS  CAS  PubMed  Google Scholar 

  52. Duffy, J. E. et al. The functional role of biodiversity in ecosystems: Incorporating trophic complexity. Ecol. Lett. 10, 522–538 (2007)

    PubMed  Google Scholar 

  53. Diaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007)This paper outlined a framework for linking species functional traits to ecosystem services, which moves the field of BES research towards more predictive models.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schmid, B., Hector, A., Saha, P. & Loreau, M. Biodiversity effects and transgressive overyielding. J. Plant Ecol. 1, 95–102 (2008)

    Google Scholar 

  55. Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14, 1125–1140 (2008)

    ADS  Google Scholar 

  56. Tilman, D., Reich, P. & Isbell, F. Biodiversity impacts ecosystem productivity as much as resources, disturbance or herbivory. Proc. Natl Acad. Sci. USA (in the press)

  57. Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Naturehttp://dx.doi.org/10.1038/nature11118 (2 May 2012)

  58. Houghton, J. T., Jenkins, G. J., Ephraums, J. J., eds. Climate Change: The IPCC Scientific Assessment (Cambridge Univ. Press, 2007)

  59. Stachowicz, J. J., Graham, M., Bracken, M. E. S. & Szoboszlai, A. I. Diversity enhances cover and stability of seaweed assemblages: The role of heterogeneity and time. Ecology 89, 3008–3019 (2008)

    PubMed  Google Scholar 

  60. Dimitrakopoulos, P. G. & Schmid, B. Biodiversity effects increase linearly with biotope space. Ecol. Lett. 7, 574–583 (2004)

    Google Scholar 

  61. Venail, P. A., Maclean, R. C., Meynard, C. N. & Mouquet, N. Dispersal scales up the biodiversity-productivity relationship in an experimental source-sink metacommunity. Proc. R. Soc. Lond. B 277, 2339–2345 (2010)

    Google Scholar 

  62. Tylianakis, J. M. et al. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol. 6, e122 (2008)

    PubMed Central  Google Scholar 

  63. Cardinale, B. J. Biodiversity improves water quality through niche partitioning. Nature 472, 86–89 (2011)

    ADS  CAS  PubMed  Google Scholar 

  64. Finke, D. L. & Snyder, W. E. Niche partitioning increases resource exploitation by diverse communities. Science 321, 1488–1490 (2008)

    ADS  CAS  PubMed  Google Scholar 

  65. Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007)

    ADS  CAS  PubMed  Google Scholar 

  66. Zavaleta, E. S., Pasari, J. R., Hulvey, K. B. & Tilman, G. D. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443–1446 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011)

    ADS  CAS  PubMed  Google Scholar 

  68. Mace, G. M., Gittleman, J. L. & Purvis, A. Preserving the tree of life. Science 300, 1707–1709 (2003)

    ADS  CAS  PubMed  Google Scholar 

  69. Díaz, S., Fargione, J., Chapin, F. S. & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 4, 1300–1305 (2006)

    Google Scholar 

  70. Letourneau, D. K. et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21 (2011)

    PubMed  Google Scholar 

  71. Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, W., Ricketts, T. H., Kremen, C., Carney, K. & Swinton, S. M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 64, 253–260 (2007)

    Google Scholar 

  73. Latta, L. C. et al. Species and genotype diversity drive community and ecosystem properties in experimental microcosms. Evol. Ecol. 25, 1107–1125 (2011)

    Google Scholar 

  74. Denoth, M., Frid, L. & Myers, J. H. Multiple agents in biological control: improving the odds? Biol. Control 24, 20–30 (2002)

    Google Scholar 

  75. Letourneau, D. K., Jedlicka, J. A., Bothwell, S. G. & Moreno, C. R. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 573–592 (2009)

    Google Scholar 

  76. Vance-Chalcraft, H. D., Rosenheim, J. A., Vonesh, J. R., Osenberg, C. W. & Sih, A. The influence of intraguild predation on prey suppression and prey release: A meta-analysis. Ecology 88, 2689–2696 (2007)

    PubMed  Google Scholar 

  77. Taylor, L. H., Latham, S. M. & Woolhouse, M. E. J. Risk factors for human disease emergence. Phil. Trans. R. Soc. Lond. B 356, 983–989 (2001)

    CAS  Google Scholar 

  78. Wardle, D. A., Bardgett, R. D., Callaway, R. M. & Van der Putten, W. H. Terrestrial ecosystem responses to species gains and losses. Science 332, 1273–1277 (2011)

    ADS  CAS  PubMed  Google Scholar 

  79. Solan, M. et al. Extinction and ecosystem function in the marine benthos. Science 306, 1177–1180 (2004)

    ADS  CAS  PubMed  Google Scholar 

  80. Bunker, D. E. et al. Species loss and aboveground carbon storage in a tropical forest. Science 310, 1029–1031 (2005)

    ADS  CAS  PubMed  Google Scholar 

  81. Ives, A. R. & Cardinale, B. J. Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429, 174–177 (2004)

    ADS  CAS  PubMed  Google Scholar 

  82. Sax, D. F. & Gaines, S. D. Species diversity: from global decreases to local increases. Trends Ecol. Evol. 18, 561–566 (2003)

    Google Scholar 

  83. Bardgett, R. D. & Wardle, D. A. Aboveground-belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change (Oxford Univ. Press, 2010)

    Google Scholar 

  84. Vilà, M. et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011)

    PubMed  Google Scholar 

  85. Fox, J. W. & Kerr, B. Analyzing the effects of species gain and loss on ecosystem function using the extended Price equation partition. Oikos 121, 290–298 (2012)

    Google Scholar 

  86. Loeuille, N. & Loreau, M. Evolutionary emergence of size-structured food webs. Proc. Natl Acad. Sci. USA 102, 5761–5766 (2005)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Berlow, E. L. et al. Simple prediction of interaction strengths in complex food webs. Proc. Natl Acad. Sci. USA 106, 187–191 (2009)

    ADS  CAS  PubMed  Google Scholar 

  88. O’Gorman, E. J., Jacob, U., Jonsson, T. & Emmerson, M. C. Interaction strength, food web topology and the relative importance of species in food webs. J. Anim. Ecol. 79, 682–692 (2010)

    PubMed  Google Scholar 

  89. Wood, S. A., Lilley, S. A., Schiel, D. R. & Shurin, J. B. Organismal traits are more important than environment for species interactions in the intertidal zone. Ecol. Lett. 13, 1160–1171 (2010)

    PubMed  Google Scholar 

  90. Kinzig, A. P. et al. Paying for ecosystem services-promise and peril. Science 334, 603–604 (2011)

    ADS  CAS  PubMed  Google Scholar 

  91. Goldman-Benner, R. et al. Water funds and PES: Practice learns from theory and theory can learn from practice. Oryx 46, 55–63 (2012)

    Google Scholar 

  92. Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011)

    ADS  Google Scholar 

  93. Kareiva, P., Tallis, H., Ricketts, T., Daily, G. & Polasky, S. Natural Capital: Theory & Practice of Mapping Ecosystem Services (Oxford Univ. Press, 2011)This book summarizes the state-of-the-art in modelling ecosystem services.

    Google Scholar 

  94. Heal, G. M. et al. Valuing Ecosystem Services: Toward Better Environmental Decision Making (The National Academies Press, 2005)

  95. Jackson, R. B. et al. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005)

    ADS  CAS  PubMed  Google Scholar 

  96. Perrings, C. et al. Ecosystem services, targets, and indicators for the conservation and sustainable use of biodiversity. Front. Ecol. Environ 9, 512–520 (2011)

    Google Scholar 

  97. Kinzig, A. P. et al. Ecosystem services: Free lunch no more response. Science 335, 656–657 (2012)

    ADS  CAS  Google Scholar 

  98. Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168 (2010)

    ADS  CAS  PubMed  Google Scholar 

  99. Perrings, C., Duraiappah, A., Larigauderie, A. & Mooney, H. The biodiversity and ecosystem services science-policy interface. Science 331, 1139–1140 (2011)

    ADS  CAS  PubMed  Google Scholar 

  100. Larigauderie, A. et al. Biodiversity and ecosystem services science for a sustainable planet: The DIVERSITAS vision for 2012–20. Curr. Opin. Environ. Sust. 4, 101–105 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was conceived as a part of the working group, Biodiversity and the Functioning of Ecosystems: Translating Model Experiments into Functional Reality, supported by the National Center for Ecological Analysis and Synthesis, a Center funded by the National Science Foundation (NSF Grant EF-0553768), the University of California, Santa Barbara, and the State of California. Additional funds were provided by NFS’ DIMENSIONS of Biodiversity program to BJC (DEB-104612), and by the Biodiversity and Ecosystem Services Research Training Network (BESTNet) (NSF Grant 0639252). The use of trade names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley J. Cardinale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2 and Supplementary References. This file was replaced on 25 July 2012 to correct the errors in Supplementary Table 2. (PDF 316 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardinale, B., Duffy, J., Gonzalez, A. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012). https://doi.org/10.1038/nature11148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11148

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing