Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago

Abstract

Earth’s lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature1,2. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time3,4,5, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon3,5. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics6. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago7,8,9, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium–lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope–time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9–3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens10,11,12. These data suggest a transitional period 3.5–3.2 Gyr ago from an ancient (3.9–3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate tectonic processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Geological map 32 of the Nuuk region in southern West Greenland.
Figure 2: Plot of εHf versus zircon 207 Pb/ 206 Pb age for Eoarchaean to Mesoarchaean TTG gneisses and detrital zircon grains from southern West Greenland.
Figure 3: Plot of zircon δ 18 O versus 207 Pb/ 206 Pb age for Eoarchaean to Mesoarchaean TTG gneisses from southwest Greenland.

References

  1. 1

    Davies, G. F. On the emergence of plate-tectonics. Geology 20, 963–966 (1992)

    ADS  Article  Google Scholar 

  2. 2

    Labrosse, S. & Jaupart, C. Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics. Earth Planet. Sci. Lett. 260, 465–481 (2007)

    CAS  ADS  Article  Google Scholar 

  3. 3

    McLennan, S. M. &. Taylor, S. R. Geochemical constraints on the growth of the continental crust. J. Geol. 90, 347–361 (1982)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Allègre, C. J. & Rousseau, D. The growth of the continent through geological time studied by Nd isotope analysis of shales. Earth Planet. Sci. Lett. 67, 19–34 (1984)

    ADS  Article  Google Scholar 

  5. 5

    Belousova, E. A. et al. The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119, 457–466 (2010)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Shirey, S. B. & Richardson, S. H. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333, 434–436 (2011)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Nutman, A. P., Friend, C. R. L. & Paxton, S. Detrital zircon sedimentary provenance ages for the Eoarchaean Isua supracrustal belt southern West Greenland: juxtaposition of an imbricated ca. 3700Ma juvenile arc against an older complex with 3920–3760Ma components. Precambr. Res. 172, 212–233 (2009)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Kamber, B. S., Collerson, K. D., Moorbath, S. & Whitehouse, M. J. Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust. Contrib. Mineral. Petrol. 145, 25–46 (2003)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Hiess, J., Bennett, V. C., Nutman, A. P. & Williams, I. S. In situ U–Pb, O and Hf isotopic compositions of zircon and olivine from Eoarchaean rocks, West Greenland: new insights to making old crust. Geochim. Cosmochim. Acta 73, 4489–4516 (2009)

    CAS  ADS  Article  Google Scholar 

  10. 10

    DeCelles, P. G., Ducea, M. N., Kapp, P. & Zandt, G. Cyclicity in Cordilleran orogenic systems. Nature Geosci. 2, 251–257 (2009)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Kemp, A. I. S. et al. Nd, Hf and O isotope evidence for rapid continental growth during accretionary orogenesis in the Tasmanides, eastern Australia. Earth Planet. Sci. Lett. 284, 455–466 (2009)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Mišković, A. & Schaltegger, U. Crustal growth along a non-collisional cratonic margin: a Lu–Hf isotopic survey of the Eastern Cordilleran granitoids of Peru. Earth Planet. Sci. Lett. 279, 303–315 (2009)

    ADS  Article  Google Scholar 

  13. 13

    Cawood, P. A. Terra Australis orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Sci. Rev. 69, 249–279 (2005)

    ADS  Article  Google Scholar 

  14. 14

    Van Kranendonk, M. J. Onset of plate tectonics. Science 333, 413–414 (2011)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Friend, C. R. L. & Nutman, A. P. New pieces to the Archaean terrane jigsaw puzzle in the Nuuk region, southern West Greenland: steps in transforming a simple insight into a complex regional tectonothermal model. J. Geol. Soc. Lond. 162, 147–162 (2005)

    Article  Google Scholar 

  16. 16

    Valley, J. W. et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561–580 (2005)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Valley, J. W., Chiarenzelli, J. R. & McLelland, J. M. Oxygen isotope geochemistry of zircon. Earth Planet. Sci. Lett. 126, 187–206 (1994)

    CAS  ADS  Article  Google Scholar 

  18. 18

    Nutman, A. P., Friend, C. R. L., Bennett, V. C. & McGregor, V. R. Dating of the Ameralik dyke swarms of the Nuuk district, southern West Greenland: mafic intrusion events starting from c. 3510 Ma. J. Geol. Soc. 161, 421–430 (2004)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Kemp, A. I. S. et al. Concurrent Pb–Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas. Chem. Geol. 261, 244–260 (2009)

    CAS  ADS  Article  Google Scholar 

  20. 20

    Amelin, Y., Kamo, S. L. & Lee, D. C. Evolution of early crust in chondritic or nonchondritic Earth inferred from U–Pb and Lu–Hf data for chemically abraded zircon from the Itsaq Gneiss Complex, West Greenland. Can. J. Earth Sci. 48, 141–160 (2011)

    CAS  Article  Google Scholar 

  21. 21

    Blichert-Toft, J. & Albaréde, F. Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth Planet. Sci. Lett. 265, 686–702 (2008)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Friend, C. R. L. & Nutman, A. P. Complex 3670–3500 Ma orogenic episodes superimposed on juvenile crust accreted between 3850 and 3690 Ma, Itsaq gneiss complex, southern West Greenland. J. Geol. 113, 375–397 (2005)

    ADS  Article  Google Scholar 

  23. 23

    Kamber, B. S. & Moorbath, S. Initial Pb of the Amîtsoq gneiss revisited: implication for the timing of early Archaean crustal evolution in West Greenland. Chem. Geol. 150, 19–41 (1998)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Kemp, A. I. S. et al. Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296, 45–56 (2010)

    CAS  ADS  Article  Google Scholar 

  25. 25

    Griffin, W. L. & O’Reilly, S. Y. in The Earth’s Oldest Rocks (eds Van Kranendonk, M. J., Smithies, R. H. & Bennett, V. C. ) 1013–1035 (Elsevier, 2007)

    Book  Google Scholar 

  26. 26

    Polat, A. et al. Field and geochemical characteristics of the Mesoarchean (3075 Ma) Ivisaartoq greenstone belt, southern West Greenland: evidence for seafloor hydrothermal alteration in a supra-subduction oceanic crust. Gondwana Res. 11, 69–91 (2007)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Garde, A. A. A mid-Archaean island arc complex in the eastern Akia terrane, Godthåbsfjord, southern West Greenland. J. Geol. Soc. 164, 565–579 (2007)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Polat, A., Frei, R., Scherstén, A. & Apple, P. W. U. New age (ca. 2970 Ma), mantle source composition and geodynamic constraints on the Archean Fiskenæsset anorthosite complex, SW Greenland. Chem. Geol. 277, 1–20 (2010)

    CAS  ADS  Article  Google Scholar 

  29. 29

    Scherstén, A. et al. Re-Os and U-Pb constraints on gold mineralisation in the Neoarchaean Storø supracrustal belt, Storø Island, southern West Greenland. Precambr. Res. 200–203, 149–162 (2012)

    ADS  Article  Google Scholar 

  30. 30

    Friend, C. R. L., Nutman, A. P., Baadsgard, H. & Duke, M. J. M. The whole rock Sm–Nd ‘age’ for the 2825 Ma Ikkattoq gneisses (Greenland) is 800 Ma too young: insights into Archaean TTG petrogenesis. Chem. Geol. 261, 62–76 (2009)

    ADS  Article  Google Scholar 

  31. 31

    Ranero, C. R. & von Huene, R. Subduction erosion along the Middle America convergent margin. Nature 404, 748–752 (2000)

    CAS  ADS  Article  Google Scholar 

  32. 32

    Escher, J. C. & Pulvertaft, T. C. R. Geological Map of Greenland, 1:2,500 000 (Geological Survey of Greenland, 1995)

    Google Scholar 

  33. 33

    Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008)

    CAS  ADS  Article  Google Scholar 

  34. 34

    Gerdes, A. & Zeh, A. Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet. Sci. Lett. 249, 47–61 (2006)

    CAS  ADS  Article  Google Scholar 

  35. 35

    Frei, D. & Gerdes, A. Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chem. Geol. 261, 261–270 (2009)

    CAS  ADS  Article  Google Scholar 

  36. 36

    Jackson, S., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation – inductively coupled plasma – mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211, 47–69 (2004)

    CAS  ADS  Article  Google Scholar 

  37. 37

    Woodhead, J. & Hergt, J. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand. Geol. Res. 29, 183–195 (2005)

    CAS  Article  Google Scholar 

  38. 38

    Segal, I., Halicz, L. & Platzner, I. T. Accurate isotope ratio measurements of ytterbium by multi-collector inductively coupled plasma mass spectrometry applying erbium and hafnium in an improved double external normalisation procedure. J. Anal. At. Spectrom. 18, 1217–1223 (2003)

    CAS  Article  Google Scholar 

  39. 39

    Vervoort, J. D., Patchett, P. J., Söderlund, U. & Baker, M. The isotopic composition of Yb and the precise and accurate determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. Geochem. Geophys. Geosyst. 5 Q11002 (2004)

  40. 40

    Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008)

    CAS  ADS  Article  Google Scholar 

  41. 41

    Scherer, E., Munker, C. & Mezger, K. Calibration of the lutetium-hafnium clock. Science 293, 683–687 (2001)

    CAS  ADS  Article  Google Scholar 

  42. 42

    Söderlund, U., Patchett, J. P., Vervoort, J. D. & Isachsen, C. E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 219, 311–324 (2004)

    ADS  Article  Google Scholar 

  43. 43

    Nemchin, A. A., Whitehouse, M. J., Pidgeon, R. T. & Meyer, C. Oxygen isotopic signature of 4.4–3.9 Ga zircons as a monitor of differentiation processes on the Moon. Geochim. Cosmochim. Acta 70, 1864–1872 (2006)

    CAS  ADS  Article  Google Scholar 

  44. 44

    Whitehouse, M. J. & Nemchin, A. A. High precision, high accuracy measurement of oxygen isotopes in large lunar zircon by SIMS. Chem. Geol. 261, 32–42 (2009)

    ADS  Article  Google Scholar 

  45. 45

    Wiedenbeck, M. et al. Further characterisation of the 91500 zircon crystal. Geostand. Geoanalyt. Res. 28, 9–39 (2004)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financed through grants from the Geocenter Denmark (Geocenterbevilling 7-2006 to T.N. and A.S.), the Swedish research council (research grant number 2008-3447 to A.S.) and the Danish National Research Foundation to NordCEE. J.E.H. was financed by the Deutsche Forschungsgemeinschaft (DFG) under grant numbers Mu 1406/8 and HO 4794/1-1. A.I.S.K. acknowledges support from the Australian Research Council fellowships DP0773029 and FT100100059. Y. Hu provided technical assistance during Hf isotope measurement in the Advanced Analytical Centre, James Cook University. The NordSIM laboratory is operated under an agreement between the research funding agencies of Denmark, Norway and Sweden, the Geological Survey of Finland and the Swedish Museum of Natural History; this is NordSIM contribution number 309. We are grateful for logistical and financial support given by the Geological Survey of Denmark and Greenland. This paper is published with permission from the Geological Survey of Denmark and Greenland.

Author information

Affiliations

Authors

Contributions

T.N., A.S., J.E.H. and M.T.R. did the fieldwork and sampling and T.N. carried out all analyses. T.N., together with A.S., A.I.S.K. and M.T.R. developed and wrote the manuscript. T.N. prepared the Supplementary Information. A.I.S.K. assisted with Hf isotope analyses and M.J.W. with oxygen isotope analyses. M.J.W., T.F.K. and J.E.H. assisted with data interpretation and with refining the manuscript.

Corresponding author

Correspondence to T. Næraa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data and additional references. (PDF 2632 kb)

Supplementary Table 1

This file contains whole rock major and trace element chemistry. (XLS 90 kb)

Supplementary Table 2

This file contains Zircon U-Pb age data. (XLS 349 kb)

Supplementary Table 3

This file contains Zircon Hf isotope data. (XLS 128 kb)

Supplementary Table 4

This file contains Zircon O isotope data. (XLS 147 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Næraa, T., Scherstén, A., Rosing, M. et al. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 485, 627–630 (2012). https://doi.org/10.1038/nature11140

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing