Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Autoregulation of microRNA biogenesis by let-7 and Argonaute

Abstract

MicroRNAs (miRNAs) comprise a large family of small RNA molecules that post-transcriptionally regulate gene expression in many biological pathways1. Most miRNAs are derived from long primary transcripts that undergo processing by Drosha to produce 65-nucleotide precursors that are then cleaved by Dicer, resulting in the mature 22-nucleotide forms2,3. Serving as guides in Argonaute protein complexes, mature miRNAs use imperfect base pairing to recognize sequences in messenger RNA transcripts, leading to translational repression and destabilization of the target messenger RNAs4,5. Here we show that the miRNA complex also targets and regulates non-coding RNAs that serve as substrates for the miRNA-processing pathway. We found that the Argonaute protein in Caenorhabditis elegans, ALG-1, binds to a specific site at the 3′ end of let-7 miRNA primary transcripts and promotes downstream processing events. This interaction is mediated by mature let-7 miRNA through a conserved complementary site in its own primary transcript, thus creating a positive-feedback loop. We further show that ALG-1 associates with let-7 primary transcripts in nuclear fractions. Argonaute also binds let-7 primary transcripts in human cells, demonstrating that the miRNA pathway targets non-coding RNAs in addition to protein-coding messenger RNAs across species. Moreover, our studies in C. elegans reveal a novel role for Argonaute in promoting biogenesis of a targeted transcript, expanding the functions of the miRNA pathway in gene regulation. This discovery of autoregulation of let-7 biogenesis establishes a new mechanism for controlling miRNA expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Argonaute binds and regulates pri-let-7.
Figure 2: The ALG-1-binding site in pri-let-7 regulates expression of let-7.
Figure 3: Mature let-7 regulates its own maturation.
Figure 4: Association of ALG-1 with pri-let-7 in nuclear fractions.

Similar content being viewed by others

References

  1. Suh, N. & Blelloch, R. Small RNAs in early mammalian development: from gametes to gastrulation. Development 138, 1653–1661 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nature Rev. Mol. Cell Biol. 10, 126–139 (2009)

    Article  CAS  Google Scholar 

  3. Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nature Rev. Genet. 11, 597–610 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. Huntzinger, E. & Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Rev. Genet. 12, 99–110 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. Zisoulis, D. G. et al. Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans . Nature Struct. Mol. Biol. 17, 173–179 (2010)

    Article  CAS  Google Scholar 

  7. Bracht, J., Hunter, S., Eachus, R., Weeks, P. & Pasquinelli, A. E. Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. RNA 10, 1586–1594 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Wynsberghe, P. M. et al. LIN-28 co-transcriptionally binds primary let-7 to regulate miRNA maturation in Caenorhabditis elegans . Nature Struct. Mol. Biol. 18, 302–308 (2011)

    Article  CAS  Google Scholar 

  9. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. Duchaine, T. F. et al. Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. Cell 124, 343–354 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Diederichs, S. & Haber, D. A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097–1108 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. Tan, G. S. et al. Expanded RNA-binding activities of mammalian Argonaute 2. Nucleic Acids Res. 37, 7533–7545 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans . Nature 403, 901–906 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553–563 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. Chatterjee, S., Fasler, M., Bussing, I. & Grosshans, H. Target-mediated protection of endogenous microRNAs in C. elegans . Dev. Cell 20, 388–396 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Chatterjee, S. & Grosshans, H. Active turnover modulates mature microRNA activity in Caenorhabditis elegans . Nature 461, 546–549 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Vella, M. C., Choi, E. Y., Lin, S. Y., Reinert, K. & Slack, F. J. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′ UTR. Genes Dev. 18, 132–137 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Büssing, I., Yang, J. S., Lai, E. C. & Grosshans, H. The nuclear export receptor XPO-1 supports primary miRNA processing in C. elegans and Drosophila . EMBO J. 29, 1830–1839 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Castanotto, D., Lingeman, R., Riggs, A. D. & Rossi, J. J. CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proc. Natl Acad. Sci. USA 106, 21655–21659 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang, R. et al. Mouse miRNA-709 directly regulates miRNA-15a/16–1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res 22, 504–515 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell 32, 276–284 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. Lehrbach, N. J. et al. LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans . Nature Struct. Mol. Biol. 16, 1016–1020 (2009)

    Article  CAS  Google Scholar 

  23. Michlewski, G. & Caceres, J. F. Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis. Nature Struct. Mol. Biol. 17, 1011–1018 (2010)

    Article  CAS  Google Scholar 

  24. Newman, M. A., Thomson, J. M. & Hammond, S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539–1549 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biol. 10, 987–993 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. Trabucchi, M. et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459, 1010–1014 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Büssing, I., Slack, F. J. & Grosshans, H. let-7 microRNAs in development, stem cells and cancer. Trends Mol. Med. 14, 400–409 (2008)

    Article  PubMed  Google Scholar 

  29. Hendrickson, D. G., Hogan, D. J., Herschlag, D., Ferrell, J. E. & Brown, P. O. Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. PLoS ONE 3, e2126 (2008)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Frøkjaer-Jensen, C. et al. Single-copy insertion of transgenes in Caenorhabditis elegans . Nature Genet. 40, 1375–1383 (2008)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Lykke-Andersen and members of the Pasquinelli lab for reading the manuscript, and we thank D. Hogan for discussions. We thank F. Slack for originally pointing out the let-7 complementary site in pri-let-7; the M. David lab for sharing their real-time PCR machine; P. Van Wynsberghe for the Δalg-1 primary let-7 plasmid; C. Mello for the worm fractionation protocol; E. Moss for LIN-28 antibodies; and A. Gorin, H. Jenq and S. Verma for technical assistance. Funding was provided by a Leukemia & Lymphoma Society Special Fellow Award 3611-11 (D.G.Z.); US National Institutes of Health (NIH) CMG and NIH/NCI T32 CA009523 Training Grants (Z.S.K.); the Swedish Board of Study Support (R.K.C.); and NIH grant GM071654, the Keck Foundation and the Peter Gruber Foundation (A.E.P.).

Author information

Authors and Affiliations

Authors

Contributions

A.E.P., D.G.Z. and Z.S.K. designed the project and wrote the paper. D.G.Z. (Figs 1b, c, 2a, 3b, g and 4b–e and Supplementary Figs 2, 3a–c, 4a and 6a), Z.S.K. (Figs 1d, 2c, d and 3c and Supplementary Figs 3d, 4c, d, g and 6b), R.K.C. (Figs 2b, 3g and 4a and Supplementary Fig. 4b) and A.E.P. (Fig. 4a and Supplementary Fig. 7) performed the experiments and analysed the data. A.E.P. supervised the studies.

Corresponding author

Correspondence to Amy E. Pasquinelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2 and Supplementary Figures 1-7. (PDF 11404 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zisoulis, D., Kai, Z., Chang, R. et al. Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature 486, 541–544 (2012). https://doi.org/10.1038/nature11134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11134

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing