Subjects

Abstract

The shell structure of atomic nuclei is associated with ‘magic numbers’ and originates in the nearly independent motion of neutrons and protons in a mean potential generated by all nucleons. During β+-decay, a proton transforms into a neutron in a previously not fully occupied orbital, emitting a positron–neutrino pair with either parallel or antiparallel spins, in a Gamow–Teller or Fermi transition, respectively. The transition probability, or strength, of a Gamow–Teller transition depends sensitively on the underlying shell structure and is usually distributed among many states in the neighbouring nucleus. Here we report measurements of the half-life and decay energy for the decay of 100Sn, the heaviest doubly magic nucleus with equal numbers of protons and neutrons. In the β-decay of 100Sn, a large fraction of the strength is observable because of the large decay energy. We determine the largest Gamow–Teller strength so far measured in allowed nuclear β-decay, establishing the ‘superallowed’ nature of this Gamow–Teller transition. The large strength and the low-energy states in the daughter nucleus, 100In, are well reproduced by modern, large-scale shell model calculations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Spin-isospin responses via (p,n) and (n,p) reactions. Prog. Part. Nucl. Phys. 56, 446–531 (2006)

  2. 2.

    , , & The essential decay of pandemonium: a demonstration of errors in complex beta-decay schemes. Phys. Lett. B 71, 307–310 (1977)

  3. 3.

    , & The Ame2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl. Phys. A 729, 337–676 (2003)

  4. 4.

    et al. Gamow-Teller transition strengths from 56Ni. Phys. Rev. Lett. 107, 202501 (2011)

  5. 5.

    , , , & The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 77, 427–488 (2005)

  6. 6.

    The nuclear shell model towards the drip lines. Prog. Part. Nucl. Phys. 47, 517–599 (2001)

  7. 7.

    & Gamow-Teller strength in the region of 100Sn. Phys. Rev. C 50, R2270–R2273 (1994)

  8. 8.

    , , , & Complete 0[lower case h with a diagonal stike through it]ω shell model Monte Carlo calculations of 94Ru, 96Pd, 96,98Cd and 100Sn. Phys. Lett. B 367, 17–20 (1996)

  9. 9.

    , & Gamow-Teller beta-decay strengths of neutron-deficient tin isotopes: comparison of FFST and pnBCS+QRPA results. Acta Phys. Pol. B 31, 953–963 (2000)

  10. 10.

    et al. Systematics of Gamow-Teller beta decay “Southeast” of 100Sn. Eur. Phys. J. A 46, 45–53 (2010)

  11. 11.

    et al. Production and identification of 100Sn. Z. Phys. A 348, 241–242 (1994)

  12. 12.

    et al. Identification of the doubly-magic nucleus 100Sn in the reaction 112Sn+natNi at 63 MeV/nucleon. Phys. Lett. B 332, 20–24 (1994)

  13. 13.

    et al. Mass measurement of 100Sn. Phys. Rev. Lett. 77, 2400–2403 (1996)

  14. 14.

    et al. Identification and decay spectroscopy of 100Sn at the GSI projectile fragment separator FRS. Nucl. Phys. A 616, 341–345 (1997)

  15. 15.

    et al. Projectile fragmentation of 112Sn at Elab = 1A GeV. Phys. Rev. C 65, 064603 (2002)

  16. 16.

    et al. Production and beta-decay of rp-process nuclei 96Cd, 98In, and 100Sn. Phys. Rev. Lett. 101, 252501 (2008)

  17. 17.

    et al. The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions. Nucl. Instrum. Methods B 70, 286–297 (1992)

  18. 18.

    et al. Recent results in fragmentation isomer spectroscopy with rising. Nucl. Instrum. Methods B 261, 1079–1083 (2007)

  19. 19.

    et al. Beta decay of 100In. Phys. Rev. C 66, 044319 (2002)

  20. 20.

    , , & Structure of particle-hole nuclei around 100Sn. Phys. Rev. C 70, 034310 (2004)

  21. 21.

    & Gamow-Teller beta decay and isospin impurity in nuclei near the proton drip line. Phys. Rev. C 48, R960–R963 (1993)

  22. 22.

    et al. Decay studies of N ≈ Z nuclei from 75Sr to 102Sn. Eur. Phys. J. A 15, 185–188 (2002)

  23. 23.

    et al. Observation of a core-excited E4 isomer in 98Cd. Phys. Rev. C 69, 064304 (2004)

  24. 24.

    et al. High-spin isomers in 96Ag: excitations across the Z = 38 and Z = 50, N = 50 closed shells. Phys. Rev. C 84, 044311 (2011)

  25. 25.

    et al. Evidence for a spin-aligned neutron–proton paired phase from the level structure of 92Pd. Nature 469, 68–71 (2011)

  26. 26.

    , , & Review of logft values in β-decay. Nucl. Data Sheets (N.Y. N.Y.) 84, 487–563 (1998)

Download references

Acknowledgements

We thank the staff of the GSI ion source and accelerator for the preparation of a stable, high-intensity 124Xe beam, and we thank the fragment separator technicians for setting up the beamline detectors. We acknowledge discussions with G. Martínez-Pinedo, K. Langanke and A. Zuker. We are also grateful to the EUROBALL Owners Committee for the use of the Euroball Cluster Detectors. This work was supported by the BMBF under contracts 06MT238, 06MT9156, 06KY205I and 06KY9136I; by the GSI; by the DFG Cluster of Excellence 153 ‘Origin and Structure of the Universe’; by the EC within the FP6 through I3-EURONS (contract no. RII3-CT-2004-506065); and by the Swedish Research Council.

Author information

Affiliations

  1. Physik Department E12, Technische Universität München, D-85748 Garching, Germany

    • C. B. Hinke
    • , M. Böhmer
    • , T. Faestermann
    • , R. Gernhäuser
    • , R. Krücken
    • , L. Maier
    • , K. Steiger
    • , K. Straub
    • , F. Nebel
    •  & S. Schwertel
  2. GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany

    • P. Boutachkov
    • , H. Geissel
    • , J. Gerl
    • , M. Górska
    • , H. Grawe
    • , N. Kurz
    • , S. Pietri
    • , H. Weick
    • , H.-J. Wollersheim
    • , I. Dillmann
    • , F. Farinon
    • , N. Goel
    • , T. C. Habermann
    • , R. Hoischen
    • , I. M. Kojouharov
    • , Y. Litvinov
    • , C. Nociforo
    • , A. Procházka
    • , H. Schaffner
    •  & C. Scheidenberger
  3. Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, 35020 Legnaro, Italy

    • A. Gottardo
  4. The Henryk Niewodniczanski Institute of Nuclear Physics (IFJ PAN), 31-342 Krakow, Poland

    • J. L. Grębosz
    •  & S. Myalski
  5. TRIUMF, Vancouver, British Columbia V6T 2A3, Canada

    • R. Krücken
  6. School of Physics & Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, UK

    • Z. Liu
    • , P. J. Woods
    •  & T. Davinson
  7. Université de Strasbourg, IPHC, 67037 Strasbourg Cedex, France

    • F. Nowacki
    •  & K. Sieja
  8. Department of Physics, University of Surrey, Guildford GU2 7XH, UK

    • Zs. Podolyák
    • , N. Al-Dahan
    • , N. Alkhomashi
    • , G. F. Farrelly
    • , P. H. Regan
    •  & S. J. Steer
  9. Physics Department, Faculty of Science, Ankara University, 06100 Tandogan, Ankara, Turkey

    • A. Ataç
    •  & A. Kaşkaş
  10. Institute of Nuclear Physics, University of Cologne, D-50937 Köln, Germany

    • A. Blazhev
    •  & N. F. Braun
  11. Institute Vinca, University of Belgrade, 11000 Belgrade, Serbia

    • I. T. Čeliković
  12. IFIC, CSIC-University of Valencia, E-46071 Valencia, Spain

    • C. Domingo-Pardo
  13. RIKEN Nishina Center, Wako, Saitama 351-0198, Japan

    • P. C. Doornenbal
    • , S. Nishimura
    •  & P.-A. Söderström
  14. Grand Accélérateur National d’Ions Lourds, CEA/DSM-CNRS/IN2P3, 14076 Caen, France

    • G. de France
  15. Comenius University, 818 06 Bratislava 16, Slovakia

    • R. Janik
    •  & P. Strmeň
  16. Institute of Experimental Physics, University of Warsaw, PL-00681 Warsaw, Poland

    • M. Karny
  17. Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany

    • Th. Kröll
  18. Department of Physics & Astronomy, Uppsala University, SE-75120 Uppsala, Sweden

    • J. Nyberg
  19. Departamento de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya (EUETIB), E-08036 Barcelona, Spain

    • A. R. Parikh
  20. KVI, University of Groningen, 9747AA Groningen, The Netherlands

    • C. Rigollet
  21. National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321, USA

    • A. Stolz

Authors

  1. Search for C. B. Hinke in:

  2. Search for M. Böhmer in:

  3. Search for P. Boutachkov in:

  4. Search for T. Faestermann in:

  5. Search for H. Geissel in:

  6. Search for J. Gerl in:

  7. Search for R. Gernhäuser in:

  8. Search for M. Górska in:

  9. Search for A. Gottardo in:

  10. Search for H. Grawe in:

  11. Search for J. L. Grębosz in:

  12. Search for R. Krücken in:

  13. Search for N. Kurz in:

  14. Search for Z. Liu in:

  15. Search for L. Maier in:

  16. Search for F. Nowacki in:

  17. Search for S. Pietri in:

  18. Search for Zs. Podolyák in:

  19. Search for K. Sieja in:

  20. Search for K. Steiger in:

  21. Search for K. Straub in:

  22. Search for H. Weick in:

  23. Search for H.-J. Wollersheim in:

  24. Search for P. J. Woods in:

  25. Search for N. Al-Dahan in:

  26. Search for N. Alkhomashi in:

  27. Search for A. Ataç in:

  28. Search for A. Blazhev in:

  29. Search for N. F. Braun in:

  30. Search for I. T. Čeliković in:

  31. Search for T. Davinson in:

  32. Search for I. Dillmann in:

  33. Search for C. Domingo-Pardo in:

  34. Search for P. C. Doornenbal in:

  35. Search for G. de France in:

  36. Search for G. F. Farrelly in:

  37. Search for F. Farinon in:

  38. Search for N. Goel in:

  39. Search for T. C. Habermann in:

  40. Search for R. Hoischen in:

  41. Search for R. Janik in:

  42. Search for M. Karny in:

  43. Search for A. Kaşkaş in:

  44. Search for I. M. Kojouharov in:

  45. Search for Th. Kröll in:

  46. Search for Y. Litvinov in:

  47. Search for S. Myalski in:

  48. Search for F. Nebel in:

  49. Search for S. Nishimura in:

  50. Search for C. Nociforo in:

  51. Search for J. Nyberg in:

  52. Search for A. R. Parikh in:

  53. Search for A. Procházka in:

  54. Search for P. H. Regan in:

  55. Search for C. Rigollet in:

  56. Search for H. Schaffner in:

  57. Search for C. Scheidenberger in:

  58. Search for S. Schwertel in:

  59. Search for P.-A. Söderström in:

  60. Search for S. J. Steer in:

  61. Search for A. Stolz in:

  62. Search for P. Strmeň in:

Contributions

Fragment separator: H.W., P.B., H. Geissel, M.G., Zs.P. and C.N.; particle detectors: C.B.H., K. Straub, R.G., T.F., L.M. and F. Nebel; RISING γ-array: P.B., M.G., S.P., J.G., I.M.K. and H.-J.W.; data acquisition and analysis software: M.B., R.G., J.L.G., N.K. and L.M.; data analysis and interpretation: C.B.H., K. Straub, T.F., M.G., H. Grawe, R.K., K. Steiger, F. Nowacki and K. Sieja; shell model calculations: F. Nowacki and K. Sieja; writing of manuscript: C.B.H., T.F., R.G., H. Grawe, R.K., F. Nowacki and K. Sieja. All authors except H. Grawe, F. Nowacki and K. Sieja took part in the preparation and the experiments, and all authors commented on the final paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to T. Faestermann.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Methods, Supplementary References, Supplementary Table 1 and Supplementary Figure 1.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature11116

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.