Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superallowed Gamow–Teller decay of the doubly magic nucleus 100Sn

Subjects

Abstract

The shell structure of atomic nuclei is associated with ‘magic numbers’ and originates in the nearly independent motion of neutrons and protons in a mean potential generated by all nucleons. During β+-decay, a proton transforms into a neutron in a previously not fully occupied orbital, emitting a positron–neutrino pair with either parallel or antiparallel spins, in a Gamow–Teller or Fermi transition, respectively. The transition probability, or strength, of a Gamow–Teller transition depends sensitively on the underlying shell structure and is usually distributed among many states in the neighbouring nucleus. Here we report measurements of the half-life and decay energy for the decay of 100Sn, the heaviest doubly magic nucleus with equal numbers of protons and neutrons. In the β-decay of 100Sn, a large fraction of the strength is observable because of the large decay energy. We determine the largest Gamow–Teller strength so far measured in allowed nuclear β-decay, establishing the ‘superallowed’ nature of this Gamow–Teller transition. The large strength and the low-energy states in the daughter nucleus, 100In, are well reproduced by modern, large-scale shell model calculations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Particle identification plot.
Figure 2: Time distribution of first decay events.
Figure 3: Spectrum of γ-radiation.
Figure 4: Tentative level scheme of 100 In.
Figure 5: Distribution of the positron energies emitted in the β-decay of 100 Sn.
Figure 6: Log( ft ) values of allowed nuclear β-decays.

Similar content being viewed by others

References

  1. Ichimura, M., Sakai, H. & Wakasa, T. Spin-isospin responses via (p,n) and (n,p) reactions. Prog. Part. Nucl. Phys. 56, 446–531 (2006)

    Article  ADS  CAS  Google Scholar 

  2. Hardy, J. C., Carraz, L. C., Jonson, B. & Hansen, P. G. The essential decay of pandemonium: a demonstration of errors in complex beta-decay schemes. Phys. Lett. B 71, 307–310 (1977)

    Article  ADS  Google Scholar 

  3. Audi, G., Wapstra, A. H. & Thibault, C. The Ame2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl. Phys. A 729, 337–676 (2003)

    Article  ADS  Google Scholar 

  4. Sasano, M. et al. Gamow-Teller transition strengths from 56Ni. Phys. Rev. Lett. 107, 202501 (2011)

    Article  ADS  CAS  Google Scholar 

  5. Caurier, E., Martínez-Pinedo, G., Nowacki, F., Poves, A. & Zuker, P. A. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 77, 427–488 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Brown, B. A. The nuclear shell model towards the drip lines. Prog. Part. Nucl. Phys. 47, 517–599 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Brown, B. A. & Rykaczewski, K. Gamow-Teller strength in the region of 100Sn. Phys. Rev. C 50, R2270–R2273 (1994)

    Article  ADS  CAS  Google Scholar 

  8. Dean, D. J., Koonin, S. E., Kuo, T. T. S., Langanke, K. & Radha, P. B. Complete 0[lower case h with a diagonal stike through it]ω shell model Monte Carlo calculations of 94Ru, 96Pd, 96,98Cd and 100Sn. Phys. Lett. B 367, 17–20 (1996)

    Article  ADS  CAS  Google Scholar 

  9. Bobyk, A., Kaminski, W. & Borzov, I. N. Gamow-Teller beta-decay strengths of neutron-deficient tin isotopes: comparison of FFST and pnBCS+QRPA results. Acta Phys. Pol. B 31, 953–963 (2000)

    ADS  CAS  Google Scholar 

  10. Batist, L. et al. Systematics of Gamow-Teller beta decay “Southeast” of 100Sn. Eur. Phys. J. A 46, 45–53 (2010)

    Article  ADS  CAS  Google Scholar 

  11. Schneider, R. et al. Production and identification of 100Sn. Z . Phys. A 348, 241–242 (1994)

    ADS  CAS  Google Scholar 

  12. Lewitowicz, M. et al. Identification of the doubly-magic nucleus 100Sn in the reaction 112Sn+natNi at 63 MeV/nucleon. Phys. Lett. B 332, 20–24 (1994)

    Article  ADS  CAS  Google Scholar 

  13. Chartier, M. et al. Mass measurement of 100Sn. Phys. Rev. Lett. 77, 2400–2403 (1996)

    Article  ADS  CAS  Google Scholar 

  14. Sümmerer, K. et al. Identification and decay spectroscopy of 100Sn at the GSI projectile fragment separator FRS. Nucl. Phys. A 616, 341–345 (1997)

    Article  ADS  Google Scholar 

  15. Stolz, A. et al. Projectile fragmentation of 112Sn at E lab = 1A GeV. Phys. Rev. C 65, 064603 (2002)

    Article  ADS  Google Scholar 

  16. Bazin, D. et al. Production and beta-decay of rp-process nuclei 96Cd, 98In, and 100Sn. Phys. Rev. Lett. 101, 252501 (2008)

    Article  ADS  CAS  Google Scholar 

  17. Geissel, H. et al. The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions. Nucl. Instrum. Methods B 70, 286–297 (1992)

    Article  ADS  Google Scholar 

  18. Pietri, S. et al. Recent results in fragmentation isomer spectroscopy with rising. Nucl. Instrum. Methods B 261, 1079–1083 (2007)

    Article  ADS  CAS  Google Scholar 

  19. Plettner, C. et al. Beta decay of 100In. Phys. Rev. C 66, 044319 (2002)

    Article  ADS  Google Scholar 

  20. Coraggio, L., Covello, A., Gargano, A. & Itaco, N. Structure of particle-hole nuclei around 100Sn. Phys. Rev. C 70, 034310 (2004)

    Article  ADS  Google Scholar 

  21. Hamamoto, I. & Sagawa, H. Gamow-Teller beta decay and isospin impurity in nuclei near the proton drip line. Phys. Rev. C 48, R960–R963 (1993)

    Article  ADS  CAS  Google Scholar 

  22. Faestermann, T. et al. Decay studies of N ≈ Z nuclei from 75Sr to 102Sn. Eur. Phys. J. A 15, 185–188 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Blazhev, A. et al. Observation of a core-excited E4 isomer in 98Cd. Phys. Rev. C 69, 064304 (2004)

    Article  ADS  Google Scholar 

  24. Boutachkov, P. et al. High-spin isomers in 96Ag: excitations across the Z = 38 and Z = 50, N = 50 closed shells. Phys. Rev. C 84, 044311 (2011)

    Article  ADS  Google Scholar 

  25. Cederwall, B. et al. Evidence for a spin-aligned neutron–proton paired phase from the level structure of 92Pd. Nature 469, 68–71 (2011)

    Article  ADS  CAS  Google Scholar 

  26. Singh, B., Rodriguez, J. L., Wong, S. S. M. & Tuli, J. K. Review of logft values in β-decay. Nucl. Data Sheets (N.Y. N.Y.) 84, 487–563 (1998)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the GSI ion source and accelerator for the preparation of a stable, high-intensity 124Xe beam, and we thank the fragment separator technicians for setting up the beamline detectors. We acknowledge discussions with G. Martínez-Pinedo, K. Langanke and A. Zuker. We are also grateful to the EUROBALL Owners Committee for the use of the Euroball Cluster Detectors. This work was supported by the BMBF under contracts 06MT238, 06MT9156, 06KY205I and 06KY9136I; by the GSI; by the DFG Cluster of Excellence 153 ‘Origin and Structure of the Universe’; by the EC within the FP6 through I3-EURONS (contract no. RII3-CT-2004-506065); and by the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Contributions

Fragment separator: H.W., P.B., H. Geissel, M.G., Zs.P. and C.N.; particle detectors: C.B.H., K. Straub, R.G., T.F., L.M. and F. Nebel; RISING γ-array: P.B., M.G., S.P., J.G., I.M.K. and H.-J.W.; data acquisition and analysis software: M.B., R.G., J.L.G., N.K. and L.M.; data analysis and interpretation: C.B.H., K. Straub, T.F., M.G., H. Grawe, R.K., K. Steiger, F. Nowacki and K. Sieja; shell model calculations: F. Nowacki and K. Sieja; writing of manuscript: C.B.H., T.F., R.G., H. Grawe, R.K., F. Nowacki and K. Sieja. All authors except H. Grawe, F. Nowacki and K. Sieja took part in the preparation and the experiments, and all authors commented on the final paper.

Corresponding author

Correspondence to T. Faestermann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary References, Supplementary Table 1 and Supplementary Figure 1. (PDF 200 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinke, C., Böhmer, M., Boutachkov, P. et al. Superallowed Gamow–Teller decay of the doubly magic nucleus 100Sn. Nature 486, 341–345 (2012). https://doi.org/10.1038/nature11116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11116

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing