Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electrocatalyst approaches and challenges for automotive fuel cells

Abstract

Fuel cells powered by hydrogen from secure and renewable sources are the ideal solution for non-polluting vehicles, and extensive research and development on all aspects of this technology over the past fifteen years has delivered prototype cars with impressive performances. But taking the step towards successful commercialization requires oxygen reduction electrocatalysts—crucial components at the heart of fuel cells—that meet exacting performance targets. In addition, these catalyst systems will need to be highly durable, fault-tolerant and amenable to high-volume production with high yields and exceptional quality. Not all the catalyst approaches currently being pursued will meet those demands.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fuel-cell components.
Figure 2: Fuel-cell polarization curve.
Figure 3: Basic platinum-based heterogeneous electrocatalyst approaches.
Figure 4: Kinetic activities of the main Pt-based electrocatalyst systems.

Similar content being viewed by others

References

  1. The. US Department of Energy (DOE). Energy Efficiency and Renewable Energyhttp://www.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf and the US DRIVE Fuel Cell Technical Team Technology Roadmap (revised 25 January 2012) http://www.uscar.org/guest/teams/17/Fuel-Cell-Tech-Team.These websites define the most critical performance, durability and cost targets for the PEM fuel-cell MEA and each of its components, as well as stack and system requirements.

  2. Wagner, F. T., Lakshmanan, B. & Mathias, M. F. Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1, 2204–2219 (2010)

    CAS  Google Scholar 

  3. Gasteiger, H., Kocha, S., Sompalli, B. & Wagner, F. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005)This paper first defined and explained the ORR activity targets and requirements for the PEM fuel-cell cathodes, particularly for fuel-cell vehicles.

    CAS  Google Scholar 

  4. Markovic, N., Schmidt, T., Stamenkovic, V. & Ross, P. Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1, 105–116 (2001)

    CAS  Google Scholar 

  5. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nature Chem. 1, 37–46 (2009)

    ADS  Google Scholar 

  6. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem. 1, 552–556 (2009)

    ADS  CAS  Google Scholar 

  7. Wipke, K. et al. Controlled Hydrogen Fleet and Infrastructure Analysis: 2011 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Meetinghttp://www.hydrogen.energy.gov/pdfs/review11/tv001_wipke_2011_o.pdf (National Renewable Energy Laboratory, 2011)

  8. Reiser, C. A. et al. A reverse-current decay mechanism for fuel cells. Electrochem. Solid-State Lett. 8, A273 (2005)This explains the basic mechanism by which fuel starvation or start-up and shut-down events in a PEM fuel cell can cause carbon corrosion on the cathode.

    CAS  Google Scholar 

  9. Atanasoska, L. L., Vernstrom, G. D., Haugen, G. M. & Atanasoski, R. T. Catalyst durability for fuel cells under start-up and shutdown conditions: evaluation of Ru and Ir sputter-deposited films on platinum in PEM environment. ECS Trans. 41, 785–795 (2011)

    CAS  Google Scholar 

  10. Halalay, I. C. et al. Anode materials for mitigating hydrogen starvation effects in PEM fuel cells. J. Electrochem. Soc. 158, B313–B321 (2011)

    CAS  Google Scholar 

  11. Sepa, D. B., Vojnovic, M. V. & Damjanovic, A. Reaction intermediates as a controlling factor in the kinetics and mechanism of oxygen reduction at platinum electrodes. Electrochim. Acta 26, 781–793 (1981)

    CAS  Google Scholar 

  12. Markovic, N. M. & Ross, P. N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002)

    ADS  CAS  Google Scholar 

  13. Debe, M. K. Effect of electrode surface area distribution on high current density performance of PEM fuel cells. J. Electrochem. Soc. 159, B54–B67 (2012)

    CAS  Google Scholar 

  14. Mayrhofer, K. J. J. et al. Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 53, 3181–3188 (2008)

    CAS  Google Scholar 

  15. Garsany, Y., Barurina, O. A., Swider-Lyons, K. E. & Kocha, S. S. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 82, 6321–6328 (2010)

    CAS  PubMed  Google Scholar 

  16. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007)This paper showed that the fundamental kinetic activity for oxygen reduction on bulk Pt–Ni alloy surfaces could be nearly two orders of magnitude higher than the standard dispersed Pt on carbon.

    ADS  CAS  PubMed  Google Scholar 

  17. Stamenkovic, V. R., Mun, B. S., Mayrhofer, K. J. J., Ross, P. N. & Markovic, N. M. Effect of surface composition on electronic structure, stability and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128, 8813–8819 (2006)This paper demonstrates the sensitivity and specificity of ORR activity to the fundamental surface structure and composition of the top few layers of Pt transition metal alloys.

    CAS  PubMed  Google Scholar 

  18. Stamenkovic, V. R. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Mater. 6, 241–247 (2007)

    ADS  CAS  Google Scholar 

  19. Paulus, U. A. et al. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim. Acta 47, 3787–3798 (2002)

    CAS  Google Scholar 

  20. Stamenković, V., Schmidt, T. J., Ross, P. N. & Markovic, N. M. Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 106, 11970–11979 (2002)

    Google Scholar 

  21. Debe, M. K. in Handbook of Fuel Cells—Fundamentals, Technology and Applications (eds Vielstich, W., Lamm, A. & Gasteiger, H. A. ) Ch. 45 (John Wiley & Sons, 2003)

    Google Scholar 

  22. Debe, M. K., Atanasoski, R. T. & Steinbach, A. J. Nanostructured thin film electrocatalysts—current status and future potential. ECS Trans. 41, 937–954 (2011)

    Google Scholar 

  23. Debe, M. K. 2009–2011 Annual Merit Reviews DOE Hydrogen and Fuel Cells and Vehicle Technologies Programs: Advanced Cathode Catalysts and Supports for PEM Fuel Cells http://www.hydrogen.energy.gov/pdfs/review11/fc001_debe_2011_o.pdf (DOE, 2011)

    Google Scholar 

  24. Debe, M. K. Nanostructured thin film electrocatalysts for PEM fuel cells—a tutorial on the fundamental characteristics and practical properties of NSTF catalysts. ECS Trans. 45 (2). 47–68 (2012)This paper defines all the catalyst and MEA measured properties and published papers so far for the NSTF type catalyst electrodes.

    CAS  Google Scholar 

  25. Gancs, L., Kobayashi, T., Debe, M. K., Atanasoski, R. & Wieckowski, A. Crystallographic characteristics of nanostructured thin film fuel cell electrocatalysts—a HRTEM study. Chem. Mater. 20, 2444–2454 (2008)

    CAS  Google Scholar 

  26. van. der Vliet, D. et al. Platinum-alloy nanostructured thin film catalysts for the oxygen reduction reaction. Electrochim. Acta 56, 8695–8699 (2011)

  27. Debe, M. K., Schmoeckel, A. K., Vernstrom, G. D. & Atanasoski, R. High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J. Power Sources 161, 1002–1011 (2006)

    ADS  CAS  Google Scholar 

  28. Debe, M. K., Steinbach, A. J. & Noda, K. Stop-start and high-current durability testing of nanostructured thin film catalysts for PEM fuel cells. ECS Trans. 3, 835–853 (2006)

    Google Scholar 

  29. Debe, M. K. et al. Durability aspects of nanostructured thin film catalysts for PEM fuel cells. ECS Trans. 1, 51–56 (2006)

    CAS  Google Scholar 

  30. Debe, M. K. et al. in Proc. 50th Annual Technical Conference of the Society of Vacuum Coaters 175–185 (The Society of Vacuum Coaters, 2006)

  31. Haugen, G., Barta, S., Emery, M., Hamrock, S. & Yandrasits, M. in Fuel Cell Chemistry and Operation (eds Herring, A. M., Zawodzinski Jr., T. A. & Hamrock, S. J. ) 137 (ACS Symposium Series 1040, 2010)

    Google Scholar 

  32. Steinbach, A. et al. Influence of anode GDL on PEMFC ultra-thin electrode water management at low temperatures. ECS Trans. 41, 449–457 (2011)

    CAS  Google Scholar 

  33. Debe, M. K. et al. Extraordinary oxygen reduction activity of Pt3Ni. J. Electrochem. Soc. 158, B910–B918 (2011)

    CAS  Google Scholar 

  34. Park, S. et al. Polarization losses under accelerated stress test using multiwalled carbon nanotube supported Pt catalyst in PEM fuel cells. J. Electrochem. Soc. 158, B297–B302 (2011)

    CAS  Google Scholar 

  35. Wang, S., Jiang, S. P., White, T. J. & Wang, X. Synthesis of Pt and Pd nanosheaths on multi-walled carbon nanotubes as potential electrocatalysts of low temperature fuel cells. Electrochim. Acta 55, 7652–7658 (2010)

    CAS  Google Scholar 

  36. Yang, R., Leisch, J., Strasser, P. & Toney, M. F. Structure of dealloyed PtCu3 thin films and catalyst activity for oxygen reduction. Chem. Mater. 22, 4712–4720 (2010)

    CAS  Google Scholar 

  37. Erlebacher, J. & Snyder, J. Dealloyed nanoporous metals for PEM fuel cell catalysis. ECS Trans. 25, 603–612 (2009)

    CAS  Google Scholar 

  38. Erlebacher, J., Aziz, M., Karma, A., Dimitrov, N. & Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001)

    ADS  CAS  PubMed  Google Scholar 

  39. Moffat, T. P., Mallett, J. J. & Hwang, S.-M. Oxygen reduction kinetics on electrodeposited Pt 100-xNix, and Pt 100-xCox . J. Electrochem. Soc. 156, B238–B251 (2009)

    CAS  Google Scholar 

  40. Imbeault, R., Antonio, P., Garbarino, S. & Guay, D. Oxygen reduction kinetics on PtxNi100-x thin films prepared by pulsed laser deposition. J. Electrochem. Soc. 157, B1051–B1058 (2010)

    CAS  Google Scholar 

  41. Ralph, T. R. & Hogarth, M. P. Catalysis for low temperature fuel cells. Platin. Met. Rev. 46, 3–14 (2002)

    CAS  Google Scholar 

  42. Schulenburg, H. et al. Heat-treated PtCo nanoparticles as oxygen reduction catalysts. J. Phys. Chem. C 113, 4069–4077 (2009)

    CAS  Google Scholar 

  43. Thompsett, D. in Handbook of Fuel Cells—Fundamentals, Technology and Applications (eds Vielstich, W., Lamm, A. & Gasteiger, H. A. ) Ch. 37 (John Wiley & Sons, 2003)

    Google Scholar 

  44. Wagner, F. T. Automotive Challenges and Opportunities for Oxygen Reduction Catalysts. In First CARISMA Intl Conf. (La Grande Motte, France, 23 September 2008)

    Google Scholar 

  45. Wang, C. et al. Monodisperse Pt3Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen. Phys. Chem. Chem. Phys. 12, 6933–6939 (2010)

    CAS  PubMed  Google Scholar 

  46. Wu, J. B. et al. Truncated octahedral Pt3Ni ORR electrocatalysts. J. Am. Chem. Soc. 132, 4984–4985 (2010)

    CAS  PubMed  Google Scholar 

  47. Zhang, J., Yang, H., Fang, J. & Zou, S. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 10, 638–644 (2010)

    ADS  CAS  PubMed  Google Scholar 

  48. Lim, B. et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302–1305 (2009)

    ADS  CAS  PubMed  Google Scholar 

  49. Gasteiger, H. A. & Markovic, N. M. Just a dream—or future reality? Science 324, 48–49 (2009)

    ADS  CAS  PubMed  Google Scholar 

  50. Wang, C. et al. Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction: size-dependent activity. J. Phys. Chem. C 113, 19365–19368 (2009)

    CAS  Google Scholar 

  51. Wang, C. et al. Correlation between surface chemistry and electrocatalytic properties of monodispersed PtxNi1-x nanoparticles. Adv. Funct. Mater. 21, 147–152 (2011)

    Google Scholar 

  52. Markovic, N. Nanosegregated cathode catalysts with ultra-low platinum loading. In 2010 DOE Hydrogen Program Annual Merit Review FC-006, http://www.hydrogen.energy.gov/pdfs/review10/fc008_markovic_2010_o_web.pdf (2011)

  53. Shao, M., Sasaki, K., Marinkivic, N. S., Zhang, L. & Adzic, R. R. Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co-Pd core-shell nanoparticle supports. Electrochem. Commun. 9, 2848–2853 (2007)

    CAS  Google Scholar 

  54. Bliznakov, S. T., Vukmirovic, M. B., Yang, L., Sutter, E. A. & Adzic, R. R. Pt monolayer on electrodeposited Pd nanostructures—advanced cathode catalysts for PEM fuel cells. ECS Trans. 41, 1055 (2011)

    CAS  Google Scholar 

  55. Vukmirovic, M. B. et al. Platinum monolayer electrocatalysts for oxygen reduction. Electrochim. Acta 52, 2257–2263 (2007)

    CAS  Google Scholar 

  56. Shao, M. H., Sasaki, K., Lui, P. & Adzic, R. R. Pd3Fe and Pt monolayer Pd3Fe electrocatalysts for oxygen reduction. Z. Phys. Chem. 221, 1175–1190 (2007)

    CAS  Google Scholar 

  57. Zhang, J. et al. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 108, 10955–10964 (2004)

    CAS  Google Scholar 

  58. Russell, A. E. et al. In situ XAS studies of core-shell PEM fuel cell catalysts: the opportunities and challenges. ECS Trans. 41, 55–67 (2011)

    CAS  Google Scholar 

  59. Haug, A. et al. Stability of a Pt-Pd core-shell catalyst: a comparative fuel cell and RDE study. 218th ECS Meeting abstr. 743 (The Electrochemical Society, 2010)

  60. Knupp, S. L. et al. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on carbon-supported PdIr Nanoparticles. Electrocatalysis 1, 213–223 (2010)

    CAS  Google Scholar 

  61. Xing, Y. et al. Enhancing oxygen reduction reaction activity via Pd-Au alloy sublayer mediation of Pt monolayer electrocatalysts. J. Phys. Chem. Lett. 1, 3238–3242 (2010)

    CAS  Google Scholar 

  62. Wang, J. X. et al. Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet and Pt shell thickness effects. J. Am. Chem. Soc. 131, 17298–17302 (2009)This is an exemplary paper in a long series by the Adzic group developing core–shell nanoparticle catalysts having Pt monolayer skins, controlled size and surface facets.

    CAS  PubMed  Google Scholar 

  63. Gong, K., Su, D. & Adzic, R. Platinum-monolayer shell on AuNi0. 5Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. J. Am. Chem. Soc. 132, 14364–14366 (2010)

    CAS  PubMed  Google Scholar 

  64. Ball, S. et al. Structure and activity of novel Pt core-shell catalysts for the oxygen reduction reaction. ECS Trans. 25, 1023–1036 (2009)

    CAS  Google Scholar 

  65. Korovina, A., Garsany, Y., Epshteyn, A., Swider-Lyons, K. E. & Ramaker, D. E. Insight into oxygen reduction on platinum-tantalum oxyphosphate electrocatalysts. 218th ECS Meeting abstr. 687 (The Electrochemical Society, 2010)

    Google Scholar 

  66. Park, S. et al. Polarization losses under accelerated stress test using multiwalled carbon nanotube supported Pt catalyst in PEM fuel cells. J. Electrochem. Soc. 158, B297–B302 (2011)

    CAS  Google Scholar 

  67. Wang, X., Waje, M. & Yan, Y. CNT-based electrodes with high efficiency for PEMFCs. Electrochem. Solid-State Lett. 8, A42–A44 (2005)

    CAS  Google Scholar 

  68. Chen, Z., Waje, M., Li, W. & Yan, Y. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. Int. Edn 46, 4060–4063 (2007)

    CAS  Google Scholar 

  69. van der Vliet, D. et al. Metallic nanotubes with tunable composition and structure as advanced electrocatalysts. Nature Mater. (submitted)

  70. Zhou, H., Zhou, W.-P., Adzic, R. & Wong, S. S. Enhanced electrocatalytic performance of one-dimensional metal nanowires and arrays generated via an ambient surfactantless synthesis. J. Phys. Chem. C 113, 5460–5466 (2009)

    CAS  Google Scholar 

  71. Adzic, R. Contiguous platinum monolayer oxygen reduction electrocatalysts on high-stability-low-cost supports. In 2011 DOE Hydrogen Program Annual Merit Review FC-009, http://www.hydrogen.energy.gov/pdfs/review11/fc009_adzic_2011_o.pdf (2011)

  72. Shao, M. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J. Power Sources 196, 2433–2444 (2011)

    ADS  CAS  Google Scholar 

  73. Myers, D. Non-platinum bimetallic cathode electrocatalysts. In 2008–2010 DOE Hydrogen Program Annual Merit Reviewshttp://www.hydrogen.energy.gov/pdfs/review10/fc004_myers_2010_o_web.pdf (2010)

  74. Atanasoski, R. & Dodelet, J.-P. in Encyclopedia of Electrochemical Power Sources (eds Garche, J. et al.) Vol. 2 639–649 (Elsevier, 2009)

    Google Scholar 

  75. Lei, M., Li, P. G., Li, L. H. & Tang, W. H. A highly ordered Fe-N-C nanoarray as a non-precious oxygen-reduction catalyst for proton exchange membrane fuel cells. J. Power Sources 196, 3548–3552 (2011)

    ADS  CAS  Google Scholar 

  76. Wang, S., Yu, D. & Dai, L. Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 133, 5182–5185 (2011)

    CAS  PubMed  Google Scholar 

  77. Zelenay, P. Advanced cathode catalysts. In 2010 DOE Hydrogen Program Annual Merit Review, http://www.hydrogen.energy.gov/pdfs/review10/fc005_zelenay_2010_o_web.pdf (2010)

  78. Ishihara, A., Ohgi, Y., Matsuzawa, K., Mitsushima, S. & Ota, K. Progress in non-precious metal oxide-based cathode for polymer electrolyte fuel cells. Electrochim. Acta 55, 8005–8012 (2010)

    CAS  Google Scholar 

  79. Lefevre, M., Proietti, E., Jaouen, F. & Dodelet, J.-P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009)

    ADS  CAS  PubMed  Google Scholar 

  80. Bashyam, R. & Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 443, 63–66 (2006)

    ADS  CAS  PubMed  Google Scholar 

  81. Proietti, E. et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nature Commun. 2, 416 (2011)This paper is the latest in a long series by these authors that show an amazing rate of improvement in non-precious metal catalysts’ beginning-of-life performances under pure oxygen.

    Google Scholar 

  82. Wood, T. E., Tan, Z., Schmoeckel, A. K., O’Neill, D. & Atanasoski, R. Non-precious metal oxygen reduction catalyst for PEM fuel cells based on nitroaniline precursor. J. Power Sources 178, 510–516 (2008)

    ADS  CAS  Google Scholar 

  83. Wu, G., More, K. L., Johnston, C. M. & Zelenay, P. High-Performance electrocatalysts for oxygen reduction derived from polyaniline, iron and cobalt. Science 332, 443–447 (2011)

    ADS  CAS  PubMed  Google Scholar 

  84. Global. and China Low-E Glass Industry Reporthttp://pressexposure.com/Global_and_China_Low-E_Glass_Industry_Report,_2010_-_Published_by_ResearchInChina-205310.html (ResearchInChina, 2010)

  85. Chen, S., Gasteiger, H. A., Hayakawa, K., Tada, T. & Shao-Horn, Y. Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: nanometer-scale compositional and morphological changes. J. Electrochem. Soc. 157, A82–A97 (2010)

    CAS  Google Scholar 

  86. Kongkanand, A., Liu, Z., Dutta, I. & Wagner, F. T. Electrochemical and microstructural evaluation of aged nanostructured thin film fuel cell electrocatalyst. J. Electrochem. Soc. 158, B1286–B1291 (2011)

    CAS  Google Scholar 

  87. Wagner, F. T. et al. Catalyst development needs and pathways for automotive PEM fuel cells. ECS Trans. 3, 19 (2006)

    CAS  Google Scholar 

  88. Koh, S., Hahn, N., Yu, C. & Strasser, P. Effects of composition and annealing conditions on catalytic activities of dealloyed Pt-Cu nanoparticle electrocatalysts for PEMFC. J. Electrochem. Soc. 155, B1281–B1288 (2008)

    CAS  Google Scholar 

  89. Oezaslan, M., Hasche, F. & Strasser, P. Structure-activity relationship of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in PEMFC. ECS Trans. 33, 333–341 (2010)

    CAS  Google Scholar 

  90. Strasser, P., Hahn, N. T. & Koh, S. Corrosion and ORR activity of Pt alloy electrocatalysts during voltammetric pretreatment. ECS Trans. 3, 139–149 (2006)

    Google Scholar 

  91. Mani, P., Srivastava, R. & Strasser, P. Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: performance in polymer electrolyte membrane fuel cells. J. Power Sources 196, 666–673 (2011)

    ADS  CAS  Google Scholar 

  92. Neyerlin, K. C., Srivastava, R., Yu, C. & Strasser, P. Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR). J. Power Sources 186, 261–267 (2009)

    ADS  CAS  Google Scholar 

  93. Wagner, F. T. High-activity dealloyed catalysts. 2011 DOE Hydrogen Program Annual Merit Review FC-087, http://www.hydrogen.energy.gov/pdfs/review11/fc087_wagner_2011_o.pdf (2011)

  94. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nature Chem. 2, 454–460 (2010)

    ADS  CAS  Google Scholar 

  95. Snyder, J., Fujita, T., Chen, M. W. & Erlebacher, J. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nature Mater. 9, 904–907 (2010)This paper shows that porosity on the nanometre scale can be controlled in Ni/Pt alloys, describes the spontaneous formation of core/shell catalysts during de-alloying and illustrates a new concept for enhancing the activity of solid surfaces in contact with ionic liquids.

    ADS  CAS  Google Scholar 

  96. Erlebacher, J. & Seshardi, R. Hard materials with tunable porosity. MRS Bull. 34, 561–568 (2009)

    CAS  Google Scholar 

  97. Snyder, J. & Erlebacher, J. The active surface area of nanoporous metals during oxygen reduction. ECS Trans. 41, 1021–1030 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge support by the Fuel Cell Technologies Program in the Office of Energy Efficiency and Renewable Energy at the US Department of Energy, for grant DE-FG36-07GO17007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark K. Debe.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debe, M. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012). https://doi.org/10.1038/nature11115

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11115

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing