Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inhibitory receptors bind ANGPTLs and support blood stem cells and leukaemia development

A Corrigendum to this article was published on 04 July 2012


How environmental cues regulate adult stem cell and cancer cell activity through surface receptors is poorly understood. Angiopoietin-like proteins (ANGPTLs), a family of seven secreted glycoproteins, are known to support the activity of haematopoietic stem cells (HSCs) in vitro and in vivo1,2,3,4,5,6,7,8,9,10. ANGPTLs also have important roles in lipid metabolism, angiogenesis and inflammation, but were considered ‘orphan ligands’ because no receptors were identified3,11,12. Here we show that the immune-inhibitory receptor human leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse orthologue paired immunoglobulin-like receptor (PIRB) are receptors for several ANGPTLs. LILRB2 and PIRB are expressed on human and mouse HSCs, respectively, and the binding of ANGPTLs to these receptors supported ex vivo expansion of HSCs. In mouse transplantation acute myeloid leukaemia models, a deficiency in intracellular signalling of PIRB resulted in increased differentiation of leukaemia cells, revealing that PIRB supports leukaemia development. Our study indicates an unexpected functional significance of classical immune-inhibitory receptors in maintenance of stemness of normal adult stem cells and in support of cancer development.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell-surface LILRB2 binds to ANGPTLs.
Figure 2: LILRB2 mediates the effect of ANGPTL in supporting the repopulation of human cord blood HSCs.
Figure 3: ANGPTLs bind PIRB and support the repopulation of mouse HSCs.
Figure 4: PIRB suppresses differentiation and enhances development of MLL–AF9 AML.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

DNA microarray data are available for download from the GEO under accession number GSE36329.


  1. Zhang, C. C., Kaba, M., Iizuka, S., Huynh, H. & Lodish, H. F. Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood 111, 3415–3423 (2008)

    Article  CAS  Google Scholar 

  2. Zhang, C. C. et al. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nature Med. 12, 240–245 (2006)

    Article  Google Scholar 

  3. Zhang, C. C. & Lodish, H. F. Cytokines regulating hematopoietic stem cell function. Curr. Opin. Hematol. 15, 307–311 (2008)

    Article  CAS  Google Scholar 

  4. Huynh, H. et al. IGFBP2 secreted by a tumorigenic cell line supports ex vivo expansion of mouse hematopoietic stem cells. Stem Cells 26, 1628–1635 (2008)

    Article  CAS  Google Scholar 

  5. Chou, S. & Lodish, H. F. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells. Proc. Natl Acad. Sci. USA 107, 7799–7804 (2010)

    Article  CAS  ADS  Google Scholar 

  6. Lin, M. & Zon, L. I. Genetic analyses in zebrafish reveal that angiopoietin-like proteins 1 and 2 are required for HSC development during embryogenesis. Am. Soc. Hematol. 50th Ann. Meeting Abstract 729 186 (2008)

  7. Khoury, M. et al. Mesenchymal stem cells secreting angiopoietin-like-5 support efficient expansion of human hematopoietic stem cells without compromising their repopulating potential. Stem Cells Dev. 20, 1371–1381 (2011)

    Article  CAS  Google Scholar 

  8. Drake, A. C. et al. Human CD34+ CD133+ hematopoietic stem cells cultured with growth factors including Angptl5 efficiently engraft adult NOD–SCID Il2rγ−/−(NSG) mice. PLoS ONE 6, e18382 (2011)

    Article  CAS  ADS  Google Scholar 

  9. Zheng, J., Huynh, H., Umikawa, M., Silvany, R. & Zhang, C. C. Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche. Blood 117, 470–479 (2011)

    Article  CAS  Google Scholar 

  10. Zheng, J. et al. Ex vivo expanded hematopoietic stem cells overcome the MHC barrier in allogeneic transplantation. Cell Stem Cell 9, 119–130 (2011)

    Article  CAS  Google Scholar 

  11. Hato, T., Tabata, M. & Oike, Y. The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends Cardiovasc. Med. 18, 6–14 (2008)

    Article  CAS  Google Scholar 

  12. Tabata, M. et al. Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell Metab. 10, 178–188 (2009)

    Article  CAS  Google Scholar 

  13. Barrow, A. D. & Trowsdale, J. The extended human leukocyte receptor complex: diverse ways of modulating immune responses. Immunol. Rev. 224, 98–123 (2008)

    Article  CAS  Google Scholar 

  14. Meyaard, L. LAIR and collagens in immune regulation. Immunol. Lett. 128, 26–28 (2010)

    Article  CAS  Google Scholar 

  15. Kitsos, C. M. et al. Calmodulin-dependent protein kinase IV regulates hematopoietic stem cell maintenance. J. Biol. Chem. 280, 33101–33108 (2005)

    Article  CAS  Google Scholar 

  16. Takai, T., Nakamura, A. & Endo, S. Role of PIR-B in autoimmune glomerulonephritis. J. Biomed. Biotechnol. 2011, 275302 (2011)

    Article  Google Scholar 

  17. Atwal, J. K. et al. PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322, 967–970 (2008)

    Article  CAS  ADS  Google Scholar 

  18. Syken, J., Grandpre, T., Kanold, P. O. & Shatz, C. J. PirB restricts ocular-dominance plasticity in visual cortex. Science 313, 1795–1800 (2006)

    Article  CAS  ADS  Google Scholar 

  19. Chan, R. J. et al. Shp-2 heterozygous hematopoietic stem cells have deficient repopulating ability due to diminished self-renewal. Exp. Hematol. 34, 1229–1238 (2006)

    Article  Google Scholar 

  20. Si, J. & Collins, S. J. Activated Ca2+/calmodulin-dependent protein kinase IIγ is a critical regulator of myeloid leukemia cell proliferation. Cancer Res. 68, 3733–3742 (2008)

    Article  CAS  Google Scholar 

  21. Lukk, M. et al. A global map of human gene expression. Nature Biotechnol. 28, 322–324 (2010)

    Article  CAS  Google Scholar 

  22. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature 442, 818–822 (2006)

    Article  CAS  ADS  Google Scholar 

  23. Somervaille, T. C. & Cleary, M. L. Identification and characterization of leukemia stem cells in murine MLL–AF9 acute myeloid leukemia. Cancer Cell 10, 257–268 (2006)

    Article  CAS  Google Scholar 

  24. Lavau, C., Szilvassy, S. J., Slany, R. & Cleary, M. L. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J. 16, 4226–4237 (1997)

    Article  CAS  Google Scholar 

  25. Ma, G. et al. Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells. Immunity 34, 385–395 (2011)

    Article  CAS  Google Scholar 

  26. Mori, Y. et al. Inhibitory immunoglobulin-like receptors LILRB and PIR-B negatively regulate osteoclast development. J. Immunol. 181, 4742–4751 (2008)

    Article  CAS  Google Scholar 

  27. Chan, R. J. & Feng, G. S. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood 109, 862–867 (2007)

    Article  CAS  Google Scholar 

  28. Shiroishi, M. et al. Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc. Natl Acad. Sci. USA 100, 8856–8861 (2003)

    Article  CAS  ADS  Google Scholar 

  29. Baldridge, M. T., King, K. Y. & Goodell, M. A. Inflammatory signals regulate hematopoietic stem cells. Trends Immunol. 32, 57–65 (2011)

    Article  CAS  Google Scholar 

  30. Ujike, A. et al. Impaired dendritic cell maturation and increased TH2 responses in PIR-B(/) mice. Nature Immunol. 3, 542–548 (2002)

    Article  CAS  Google Scholar 

  31. Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380–390 (2010)

    Article  CAS  Google Scholar 

  32. Zhang, C. C., Krieg, S. & Shapiro, D. J. HMG-1 stimulates estrogen response element binding by estrogen receptor from stably transfected HeLa cells. Mol. Endocrinol. 13, 632–643 (1999)

    Article  CAS  Google Scholar 

  33. Yan, M. et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nature Med. 12, 945–949 (2006)

    Article  CAS  Google Scholar 

  34. Zhang, C. C., Steele, A. D., Lindquist, S. & Lodish, H. F. Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc. Natl Acad. Sci. USA 103, 2184–2189 (2006)

    Article  CAS  ADS  Google Scholar 

  35. Luo, Y., Lu, Z., Raso, S. W., Entrican, C. & Tangarone, B. Dimers and multimers of monoclonal IgG1 exhibit higher in vitro binding affinities to Fcγ receptors. MAbs 1, 491–504 (2009)

    Article  Google Scholar 

  36. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005)

    Article  CAS  ADS  Google Scholar 

  37. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011)

    Article  CAS  ADS  Google Scholar 

Download references


We thank S. Armstrong for the MSCV–MLL–AF9–IRES–YFP construct, H. Hobbs for the CMV–ANGPTL6–Flag plasmid, T. Takai for providing the PIRB knockout mice to S.-H.C., X.-J. Xie for binding analysis, and UTSW Genomics and Microarray Core facility for DNA array experiments. S.-H.C. thanks support from NIH. C.C.Z. was supported by NIH grant K01 CA 120099, American Society of Hematology Junior Faculty Award, March of Dimes Basil O’Connor Scholar Award, DOD PR093256, CPRIT RP100402, and the Gabrielle’s Angel Foundation.

Author information

Authors and Affiliations



J.Z., M.U., C.C. and C.C.Z. were responsible for the study design, identification of receptors, binding, signalling and functional assays, data analysis and writing of the manuscript. J.L., X.C., C.Z., H.H., X.K., R.S. and X.W. were responsible for binding and signalling assays and data analysis. J.Y. and S.-H.C. carried out the ligand-binding assays, H.-Y.W. carried out AML characterization, and A.P.C. and E.S.W. carried out the SPR assay and data analysis.

Corresponding author

Correspondence to Cheng Cheng Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2 and Supplementary Figures 1-19. (PDF 2399 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zheng, J., Umikawa, M., Cui, C. et al. Inhibitory receptors bind ANGPTLs and support blood stem cells and leukaemia development. Nature 485, 656–660 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer