Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of a Salmonella virulence locus by an ATP-sensing leader messenger RNA

Abstract

The facultative intracellular pathogen Salmonella enterica resides within a membrane-bound compartment inside macrophages1. This compartment must be acidified for Salmonella to survive within macrophages2, possibly because acidic pH promotes expression of Salmonella virulence proteins3,4. We reasoned that Salmonella might sense its surroundings have turned acidic not only upon protonation of the extracytoplasmic domain of a protein sensor5 but also by an increase in cytosolic ATP levels, because conditions that enhance the proton gradient across the bacterial inner membrane stimulate ATP synthesis6,7. Here we report that an increase in cytosolic ATP promotes transcription of the coding region for the virulence gene mgtC, which is the most highly induced horizontally acquired gene when Salmonella is inside macrophages8. This transcript is induced both upon media acidification and by physiological conditions that increase ATP levels independently of acidification. ATP is sensed by the coupling/uncoupling of transcription of the unusually long mgtC leader messenger RNA and translation of a short open reading frame located in this region. A mutation in the mgtC leader messenger RNA that eliminates the response to ATP hinders mgtC expression inside macrophages and attenuates Salmonella virulence in mice. Our results define a singular example of an ATP-sensing leader messenger RNA. Moreover, they indicate that pathogens can interpret extracellular cues by the impact they have on cellular metabolites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mild acidic pH promotes transcription of the mgtC and mgtB coding regions in a Salmonella strain lacking the extracytoplasmic pH sensor PhoQ.
Figure 2: ATP promotes gene transcription in a manner dependent on conserved adenine nucleotides in the mgtCBR leader region.
Figure 3: Regulation of the Salmonella mgtCBR virulence operon by the PhoP/PhoQ system and mgtCBR leader region.
Figure 4: Expression of the mgtC coding region inside macrophages is dependent on its leader region’s ability to sense ATP, a property required for Salmonella virulence.

Similar content being viewed by others

References

  1. Garcia-del Portillo, F. Salmonella intracellular proliferation: where, when and how? Microbes Infect. 3, 1305–1311 (2001)

    Article  CAS  Google Scholar 

  2. Rathman, M., Sjaastad, M. D. & Falkow, S. Acidification of phagosomes containing Salmonella typhimurium in murine macrophages. Infect. Immun. 64, 2765–2773 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Alpuche Aranda, C. M., Swanson, J. A., Loomis, W. P. & Miller, S. I. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc. Natl Acad. Sci. USA 89, 10079–10083 (1992)

    Article  ADS  CAS  Google Scholar 

  4. Yu, X. J., McGourty, K., Liu, M., Unsworth, K. E. & Holden, D. W. pH sensing by intracellular Salmonella induces effector translocation. Science 328, 1040–1043 (2010)

    Article  ADS  CAS  Google Scholar 

  5. Prost, L. R. et al. Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol. Cell 26, 165–174 (2007)

    Article  CAS  Google Scholar 

  6. Harold, F. M. & Maloney, P. C. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds Neidhart, F. C. et al.) 283–306 (American Society for Microbiology, 1996)

    Google Scholar 

  7. Senior, A. E. The proton-translocating ATPase of Escherichia coli. Annu. Rev. Biophys. Biophys. Chem. 19, 7–41 (1990)

    Article  CAS  Google Scholar 

  8. Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. & Hinton, J. C. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol. Microbiol. 47, 103–118 (2003)

    Article  CAS  Google Scholar 

  9. Blanc-Potard, A. B. & Groisman, E. A. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J. 16, 5376–5385 (1997)

    Article  CAS  Google Scholar 

  10. Grabenstein, J. P., Fukuto, H. S., Palmer, L. E. & Bliska, J. B. Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages. Infect. Immun. 74, 3727–3741 (2006)

    Article  CAS  Google Scholar 

  11. Lavigne, J. P., O’Callaghan, D. & Blanc-Potard, A. B. Requirement of MgtC for Brucella suis intramacrophage growth: a potential mechanism shared by Salmonella enterica and Mycobacterium tuberculosis for adaptation to a low-Mg2+ environment. Infect. Immun. 73, 3160–3163 (2005)

    Article  CAS  Google Scholar 

  12. Maloney, K. E. & Valvano, M. A. The mgtC gene of Burkholderia cenocepacia is required for growth under magnesium limitation conditions and intracellular survival in macrophages. Infect. Immun. 74, 5477–5486 (2006)

    Article  CAS  Google Scholar 

  13. Buchmeier, N. et al. A parallel intraphagosomal survival strategy shared by Mycobacterium tuberculosis and Salmonella enterica. Mol. Microbiol. 35, 1375–1382 (2000)

    Article  CAS  Google Scholar 

  14. Alix, E. & Blanc-Potard, A. B. MgtC: a key player in intramacrophage survival. Trends Microbiol. 15, 252–256 (2007)

    Article  CAS  Google Scholar 

  15. Soncini, F. C., Garcia Vescovi, E., Solomon, F. & Groisman, E. A. Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J. Bacteriol. 178, 5092–5099 (1996)

    Article  CAS  Google Scholar 

  16. Lee, E. J. & Groisman, E. A. An antisense RNA that governs the expression kinetics of a multifunctional virulence gene. Mol. Microbiol. 76, 1020–1033 (2010)

    Article  CAS  Google Scholar 

  17. Retamal, P., Castillo-Ruiz, M. & Mora, G. C. Characterization of MgtC, a virulence factor of Salmonella enterica serovar Typhi. PLoS ONE 4, e5551 (2009)

    Article  ADS  Google Scholar 

  18. Bearson, B. L., Wilson, L. & Foster, J. W. A low pH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. J. Bacteriol. 180, 2409–2417 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chamnongpol, S. & Groisman, E. A. Acetyl phosphate-dependent activation of a mutant PhoP response regulator that functions independently of its cognate sensor kinase. J. Mol. Biol. 300, 291–305 (2000)

    Article  CAS  Google Scholar 

  20. Turnbough, C. L., Jr & Switzer, R. L. Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol. Mol. Biol. Rev. 72, 266–300 (2008)

    Article  CAS  Google Scholar 

  21. Merino, E. & Yanofsky, C. Transcription attenuation: a highly conserved regulatory strategy used by bacteria. Trends Genet. 21, 260–264 (2005)

    Article  CAS  Google Scholar 

  22. Spinelli, S. V., Pontel, L. B., Garcia Vescovi, E. & Soncini, F. C. Regulation of magnesium homeostasis in Salmonella: Mg2+ targets the mgtA transcript for degradation by RNase E. FEMS Microbiol. Lett. 280, 226–234 (2008)

    Article  CAS  Google Scholar 

  23. Amiott, E. A. & Jaehning, J. A. Mitochondrial transcription is regulated via an ATP “sensing” mechanism that couples RNA abundance to respiration. Mol. Cell 22, 329–338 (2006)

    Article  CAS  Google Scholar 

  24. Dennis, P. B. et al. Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102–1105 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Shu, D. & Guo, P. A viral RNA that binds ATP and contains a motif similar to an ATP-binding aptamer from SELEX. J. Biol. Chem. 278, 7119–7125 (2003)

    Article  CAS  Google Scholar 

  26. Harvey, P. C. et al. Salmonella enterica serovar Typhimurium colonizing the lumen of the chicken intestine are growing slowly and up-regulate a unique set of virulence and metabolism genes. Infect. Immun. 79, 4105–4121 (2011)

    Article  CAS  Google Scholar 

  27. Lawley, T. D. et al. Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog. 2, e11 (2006)

    Article  Google Scholar 

  28. Rehfuss, M. Y., Parker, C. T. & Brandl, M. T. Salmonella transcriptional signature in Tetrahymena phagosomes and role of acid tolerance in passage through the protist. ISME J. 5, 262–273 (2011)

    Article  CAS  Google Scholar 

  29. Heithoff, D. M. et al. Bacterial infection as assessed by in vivo gene expression. Proc. Natl Acad. Sci. USA 94, 934–939 (1997)

    Article  ADS  CAS  Google Scholar 

  30. Park, S. Y., Cromie, M. J., Lee, E. J. & Groisman, E. A. A bacterial mRNA leader that employs different mechanisms to sense disparate intracellular signals. Cell 142, 737–748 (2010)

    Article  CAS  Google Scholar 

  31. Fields, P. I., Swanson, R. V., Haidaris, C. G. & Heffron, F. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl Acad. Sci. USA 83, 5189–5193 (1986)

    Article  ADS  CAS  Google Scholar 

  32. Davis, R. W., Bolstein, D. & Roth, J. R. Advanced Bacterial Genetics (Cold Spring Harbor Laboratory Press, 1980)

    Google Scholar 

  33. Snavely, M. D., Miller, C. G. & Maguire, M. E. The mgtB Mg2+ transport locus of Salmonella typhimurium encodes a P-type ATPase. J. Biol. Chem. 266, 815–823 (1991)

    CAS  PubMed  Google Scholar 

  34. Rust, M. J., Golden, S. S. & O’Shea, E. K. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331, 220–223 (2011)

    Article  ADS  CAS  Google Scholar 

  35. Jensen, K. F., Houlberg, U. & Nygaard, P. Thin-layer chromatographic methods to isolate 32P-labeled 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP): determination of cellular PRPP pools and assay of PRPP synthetase activity. Anal. Biochem. 98, 254–263 (1979)

    Article  CAS  Google Scholar 

  36. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000)

    Article  ADS  CAS  Google Scholar 

  37. Miller, J. H. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory Press, 1972)

    Google Scholar 

  38. Wilks, J. C. & Slonczewski, J. L. pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry. J. Bacteriol. 189, 5601–5607 (2007)

    Article  CAS  Google Scholar 

  39. Regulski, E. E. & Breaker, R. R. In-line probing analysis of riboswitches. Methods Mol. Biol. 419, 53–67 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Turnbough for discussions, M. Wade for help with the mouse virulence assays, and R. Breaker and A. Roth for help with in-line probing experiments. This work was supported, in part, by grant AI49561 from the National Institutes of Health to E.A.G., who is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

E.-J.L. conducted the experiments. E.-J.L. and E.A.G. designed the study and wrote the paper. Both authors read the paper and contributed to its final form.

Corresponding author

Correspondence to Eduardo A. Groisman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2, Supplementary References and Supplementary Figures 1-9. (PDF 681 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, EJ., Groisman, E. Control of a Salmonella virulence locus by an ATP-sensing leader messenger RNA. Nature 486, 271–275 (2012). https://doi.org/10.1038/nature11090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11090

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research