Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multiple dynamic representations in the motor cortex during sensorimotor learning


The mechanisms linking sensation and action during learning are poorly understood. Layer 2/3 neurons in the motor cortex might participate in sensorimotor integration and learning; they receive input from sensory cortex and excite deep layer neurons, which control movement. Here we imaged activity in the same set of layer 2/3 neurons in the motor cortex over weeks, while mice learned to detect objects with their whiskers and report detection with licking. Spatially intermingled neurons represented sensory (touch) and motor behaviours (whisker movements and licking). With learning, the population-level representation of task-related licking strengthened. In trained mice, population-level representations were redundant and stable, despite dynamism of single-neuron representations. The activity of a subpopulation of neurons was consistent with touch driving licking behaviour. Our results suggest that ensembles of motor cortex neurons couple sensory input to multiple, related motor programs during learning.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Learning a whisker-based object-detection task under the microscope.
Figure 2: Imaging population activity across trials.
Figure 3: Population decoding of behavioural features.
Figure 4: Single neuron representations across learning.
Figure 5: Plasticity in task-related neuronal dynamics.
Figure 6: Stability in population decoding.


  1. 1

    Scott, S. H. Inconvenient truths about neural processing in primary motor cortex. J. Physiol. (Lond.) 586, 1217–1224 (2008)

    CAS  Google Scholar 

  2. 2

    Wolpert, D. M., Diedrichsen, J. & Flanagan, J. R. Principles of sensorimotor learning. Nature Rev. Neurosci. 12, 739–751 (2011)

    CAS  Google Scholar 

  3. 3

    Wise, S. P., Moody, S. L., Blomstrom, K. J. & Mitz, A. R. Changes in motor cortical activity during visuomotor adaptation. Exp. Brain Res. 121, 285–299 (1998)

    CAS  PubMed  Google Scholar 

  4. 4

    Rokni, U., Richardson, A. G., Bizzi, E. & Seung, H. S. Motor learning with unstable neural representations. Neuron 54, 653–666 (2007)

    CAS  PubMed  Google Scholar 

  5. 5

    Komiyama, T. et al. Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464, 1182–1186 (2010)

    ADS  CAS  PubMed  Google Scholar 

  6. 6

    Hosp, J. A., Pekanovic, A., Rioult-Pedotti, M. S. & Luft, A. R. Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J. Neurosci. 31, 2481–2487 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Keller, A. Intrinsic synaptic organization of the motor cortex. Cereb. Cortex 3, 430–441 (1993)

    CAS  PubMed  Google Scholar 

  8. 8

    Mao, T. et al. Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72, 111–123 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Hooks, B. M. et al. Laminar analysis of excitatory local circuits in vibrissal motor and sensory cortical areas. PLoS Biol. 9, e1000572 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Anderson, C. T., Sheets, P. L., Kiritani, T. & Shepherd, G. M. Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex. Nature Neurosci. 13, 739–744 (2010)

    CAS  PubMed  Google Scholar 

  11. 11

    Kaneko, T., Cho, R., Li, Y., Nomura, S. & Mizuno, N. Predominant information transfer from layer III pyramidal neurons to corticospinal neurons. J. Comp. Neurol. 423, 52–65 (2000)

    CAS  PubMed  Google Scholar 

  12. 12

    Kaneko, T., Caria, M. A. & Asanuma, H. Information processing within the motor cortex. II. Intracortical connections between neurons receiving somatosensory cortical input and motor output neurons of the cortex. J. Comp. Neurol. 345, 172–184 (1994)

    CAS  PubMed  Google Scholar 

  13. 13

    Pavlides, C., Miyashita, E. & Asanuma, H. Projection from the sensory to the motor cortex is important in learning motor skills in the monkey. J. Neurophysiol. 70, 733–741 (1993)

    CAS  PubMed  Google Scholar 

  14. 14

    Iriki, A., Pavlides, C., Keller, A. & Asanuma, H. Long-term potentiation in the motor cortex. Science 245, 1385–1387 (1989)

    ADS  CAS  PubMed  Google Scholar 

  15. 15

    Rioult-Pedotti, M. S., Friedman, D., Hess, G. & Donoghue, J. P. Strengthening of horizontal cortical connections following skill learning. Nature Neurosci. 1, 230–234 (1998)

    CAS  PubMed  Google Scholar 

  16. 16

    Li, C. X. & Waters, R. S. Organization of the mouse motor cortex studied by retrograde tracing and intracortical microstimulation (ICMS) mapping. Can. J. Neurol. Sci. 18, 28–38 (1991)

    CAS  PubMed  Google Scholar 

  17. 17

    Brecht, M. et al. Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. J. Comp. Neurol. 479, 360–373 (2004)

    PubMed  Google Scholar 

  18. 18

    Ferezou, I. et al. Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56, 907–923 (2007)

    CAS  PubMed  Google Scholar 

  19. 19

    Hattox, A. M., Priest, C. A. & Keller, A. Functional circuitry involved in the regulation of whisker movements. J. Comp. Neurol. 442, 266–276 (2002)

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Grinevich, V., Brecht, M. & Osten, P. Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing. J. Neurosci. 25, 8250–8258 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Travers, J. B., Dinardo, L. A. & Karimnamazi, H. Motor and premotor mechanisms of licking. Neurosci. Biobehav. Rev. 21, 631–647 (1997)

    CAS  PubMed  Google Scholar 

  22. 22

    Kleinfeld, D., Sachdev, R. N., Merchant, L. M., Jarvis, M. R. & Ebner, F. F. Adaptive filtering of vibrissa input in motor cortex of rat. Neuron 34, 1021–1034 (2002)

    CAS  PubMed  Google Scholar 

  23. 23

    Sato, T. R. & Svoboda, K. The functional properties of barrel cortex neurons projecting to the primary motor cortex. J. Neurosci. 30, 4256–4260 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Ganguly, K. & Carmena, J. M. Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol. 7, e1000153 (2009)

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl Acad. Sci. USA 100, 7319–7324 (2003)

    ADS  CAS  PubMed  Google Scholar 

  26. 26

    Dombeck, D. A., Graziano, M. S. & Tank, D. W. Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice. J. Neurosci. 29, 13751–13760 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    O’Connor, D. H. et al. Vibrissa-based object localization in head-fixed mice. J. Neurosci. 30, 1947–1967 (2010)

    PubMed  PubMed Central  Google Scholar 

  28. 28

    O'Connor, D. H., Peron, S. P., Huber, D. & Svoboda, K. Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67, 1048–1061 (2010)

    CAS  PubMed  Google Scholar 

  29. 29

    Hill, D. N., Curtis, J. C., Moore, J. D. & Kleinfeld, D. Primary motor cortex reports efferent control of vibrissa motion on multiple timescales. Neuron 72, 344–356 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Birdwell, J. A. et al. Biomechanical models for radial distance determination by the rat vibrissal system. J. Neurophysiol. 98, 2439–2455 (2007)

    PubMed  Google Scholar 

  31. 31

    Knutsen, P. M. & Ahissar, E. Orthogonal coding of object location. Trends Neurosci. 32, 101–109 (2009)

    CAS  PubMed  Google Scholar 

  32. 32

    Hutson, K. A. & Masterton, R. B. The sensory contribution of a single vibrissa's cortical barrel. J. Neurophysiol. 56, 1196–1223 (1986)

    CAS  PubMed  Google Scholar 

  33. 33

    Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004)

    CAS  Google Scholar 

  34. 34

    Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods 6, 875–881 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002)

    ADS  CAS  PubMed  Google Scholar 

  36. 36

    Vogelstein, J. T. et al. Fast nonnegative deconvolution for spike train inference from population calcium imaging. J. Neurophysiol. 104, 3691–3704 (2010)

    PubMed  PubMed Central  Google Scholar 

  37. 37

    Graf, A. B., Kohn, A., Jazayeri, M. & Movshon, J. A. Decoding the activity of neuronal populations in macaque primary visual cortex. Nature Neurosci. 14, 239–245 (2011)

    CAS  PubMed  Google Scholar 

  38. 38

    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning 2nd edn (Springer, 2009)

    MATH  Google Scholar 

  39. 39

    Carvell, G. E., Miller, S. A. & Simons, D. J. The relationship of vibrissal motor cortex unit activity to whisking in the awake rat. Somatosens. Mot. Res. 13, 115–127 (1996)

    CAS  PubMed  Google Scholar 

  40. 40

    Graziano, M. S. A. The Intelligent Movement Machine 1st edn (Oxford, 2009)

    Google Scholar 

  41. 41

    Evarts, E. V. Relation of pyramidal tract activity to force exerted during voluntary movement. J. Neurophysiol. 31, 14–27 (1968)

    CAS  PubMed  Google Scholar 

  42. 42

    Afshar, A. et al. Single-trial neural correlates of arm movement preparation. Neuron 71, 555–564 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Graziano, M. S. & Aflalo, T. N. Mapping behavioral repertoire onto the cortex. Neuron 56, 239–251 (2007)

    CAS  PubMed  Google Scholar 

  44. 44

    Salinas, E. Rank-order-selective neurons form a temporal basis set for the generation of motor sequences. J. Neurosci. 29, 4369–4380 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997)

    CAS  PubMed  Google Scholar 

  46. 46

    Petreanu, L., Mao, T., Sternson, S. M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Porter, L. L. & White, E. L. Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse. J. Comp. Neurol. 214, 279–289 (1983)

    CAS  PubMed  Google Scholar 

  48. 48

    Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating laser-scanning microscopes. Biomed. Eng. Online 2, 13 (2003)

    PubMed  PubMed Central  Google Scholar 

  49. 49

    Greenberg, D. S. & Kerr, J. N. Automated correction of fast motion artifacts for two-photon imaging of awake animals. J. Neurosci. Methods 176, 1–15 (2008)

    PubMed  Google Scholar 

  50. 50

    Gonchar, Y., Wang, Q. & Burkhalter, A. Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front. Neuroanat. 1, 3 (2007)

    PubMed  Google Scholar 

  51. 51

    Kerlin, A. M., Andermann, M. L., Berezovskii, V. K. & Reid, R. C. Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67, 858–871 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Zariwala, H. A. et al. A cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo . J. Neurosci. 32, 3131–3141 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Maravall, M., Mainen, Z. M., Sabatini, B. L. & Svoboda, K. Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys. J. 78, 2655–2667 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Nevian, T. & Sakmann, B. Spine Ca2+ signaling in spike-timing-dependent plasticity. J. Neurosci. 26, 11001–11013 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Gordon, U., Polsky, A. & Schiller, J. Plasticity compartments in basal dendrites of neocortical pyramidal neurons. J. Neurosci. 26, 12717–12726 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nature Neurosci. 13, 1433–1440 (2010)

    CAS  PubMed  Google Scholar 

  57. 57

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001)

    MATH  Google Scholar 

  58. 58

    Stoppini, L., Buchs, P. A. & Muller, D. A. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991)

    CAS  PubMed  Google Scholar 

  59. 59

    Rathenberg, J., Nevian, T. & Witzemann, V. High-efficiency transfection of individual neurons using modified electrophysiology techniques. J. Neurosci. Methods 126, 91–98 (2003)

    PubMed  Google Scholar 

Download references


We thank B. Ölveczky, L. Petreanu, N. Li, A. Hantman and S. Druckmann for critical comments on the manuscript; N. Clack, V. Iyer and J. Vogelstein for help with software; D. Flickinger for help with microscope design; J. Kim for tdTomato adeno-associated virus; N. Xu for suggestions regarding mouse behaviour; and T.-W. Chen and E. Schreiter for help with calibrating GCaMP3.

Author information




D.H. and K.S. conceived the study. D.H. performed all behavioural and in vivo imaging experiments. J.S.W. performed the LTP experiments. D.H., D.A.G., S.P. and K.S. performed analysis. D.A.G., S.P. and D.H.O. provided software. L.T., T.G.O. and L.L.L. provided reagents. D.H., D.A.G. and K.S. wrote the paper with comments from all authors.

Corresponding author

Correspondence to K. Svoboda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-17 and Supplementary Tables 1-2. (PDF 6271 kb)

Supplementary Movie 1

This movie shows a behaving mouse under the two-photon microscope. Sequence of trial types: Go (hit), No Go (correct rejection), Go (hit), Go (hit), No Go (false alarm). (MOV 7602 kb)

Supplementary Movie 2

This movie shows motion-corrected raw fluorescence images of L2/3 neurons in vibrissal motor cortex infected with AAV-GCaMP3. The white square indicates pole sampling period. (MOV 3419 kb)

Supplementary Movie 3

This movie shows in the left panel the original high-speed whisker movie (500Hz). In the right panel the decoded whisker position (center of gray wedge) and amplitude (gray wedge width) based on calcium imaging. The black line represents C2 whisker angle (after tracking). The red hue of the wedge indicates the magnitude of the decoded whisker curvature change. (MOV 1638 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huber, D., Gutnisky, D., Peron, S. et al. Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484, 473–478 (2012).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing