Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deformation cycles of subduction earthquakes in a viscoelastic Earth

Subjects

Abstract

Subduction zones produce the largest earthquakes. Over the past two decades, space geodesy has revolutionized our view of crustal deformation between consecutive earthquakes. The short time span of modern measurements necessitates comparative studies of subduction zones that are at different stages of the deformation cycle. Piecing together geodetic ‘snapshots’ from different subduction zones leads to a unifying picture in which the deformation is controlled by both the short-term (years) and long-term (decades and centuries) viscous behaviour of the mantle. Traditional views based on elastic models, such as coseismic deformation being a mirror image of interseismic deformation, are being thoroughly revised.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Representative SEC models and development of observation technology.
Figure 2: Three primary processes after a subduction earthquake.
Figure 3: GPS- (red) and model-predicted (blue) surface velocities for three subduction zones that are at different stages of the earthquake cycle.
Figure 5
Figure 6
Figure 4: Evolution of seaward-landward motion transition for different earthquake sizes.

References

  1. Elsasser, W. M. in The Application of Modern Physics to the Earth and Planetary Interiors (ed. Runcorn, S. K.) 223–246 (John Wiley, 1969)

    Google Scholar 

  2. Bott, M. H. P. & Dean, D. S. Stress diffusion from plate boundaries. Nature 243, 339–341 (1973)

    Article  ADS  Google Scholar 

  3. Nur, A. & Mavko, G. Postseismic viscoelastic rebound. Science 183, 204–206 (1974)

    Article  ADS  CAS  Google Scholar 

  4. Schubert, G., Turcotte, D. L. & Olsen, P. Mantle Convection in the Earth and Planets (Cambridge University Press, 2001)This book provides a comprehensive review of mantle rheology, Earth structure, theory of mantle convection, and fundamental questions to be addressed by the study of geodynamics.

    Book  Google Scholar 

  5. Cohen, S. Numerical models of crustal deformation in seismic zones. Adv. Geophys. 41, 133–231 (1999)

    Article  ADS  Google Scholar 

  6. Thatcher, W. & Rundle, J. B. A viscoelastic coupling model for the cyclic deformation due to periodically repeated earthquakes at subduction zones. J. Geophys. Res. 89, 7631–7640 (1984)This paper explains century-long levelling data from southwest Japan in terms of earthquake-cycle deformation and discusses short-term versus long-term postseismic deformation.

    Article  ADS  Google Scholar 

  7. Matsu’ura, M. & Sato, T. A dislocation model for the earthquake cycle at convergent plate boundaries. Geophys. J. Int. 96, 23–32 (1989)

    Article  ADS  Google Scholar 

  8. Wang, K. in The Seismogenic Zone of Subduction Thrust Faults (eds Dixon, T. H. & Moore, J. C.) 540–574 (Columbia University Press, 2007)

    Google Scholar 

  9. Savage, J. C. & Thatcher, W. Interseismic deformation at the Nankai Trough, Japan, subduction zone. J. Geophys. Res. 97, 11117–11135 (1992)

    Article  ADS  Google Scholar 

  10. Wang, K., He, J., Dragert, H. & James, T. S. Three-dimensional viscoelastic interseismic deformation model for the Cascadia subduction zone. Earth Planets Space 53, 295–306 (2001)

    Article  ADS  Google Scholar 

  11. Márquez Azúa, B., DeMets, C. & Masterlark, T. Strong interseismic coupling, fault afterslip, and viscoelastic flow before and after the Oct. 9, 1995 Jalisco-Colima earthquake: continuous GPS measurements from Colima, Mexico. Geophys. Res. Lett. 29, 1281 (2002)

    Article  ADS  Google Scholar 

  12. Suito, H. & Freymueller, J. T. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. J. Geophys. Res. 114, B11404 (2009)

    Article  ADS  Google Scholar 

  13. Ali, S. T. & Freed, A. M. Contemporary deformation and stressing rates in Southern Alaska. Geophys. J. Int. 183, 557–571 (2010)

    Article  ADS  Google Scholar 

  14. Moreno, M. S. et al. Heterogeneous plate locking in the South–Central Chile subduction zone: building up the next great earthquake. Earth Planet. Sci. Lett. 305, 413–424 (2011)

    Article  ADS  CAS  Google Scholar 

  15. Wang, K., Wells, R., Mazzotti, S., Hyndman, R. D. & Sagiya, T. A revised dislocation model of interseismic deformation of the Cascadia subduction zone. J. Geophys. Res. 108 (B1). 2026 (2003)

    ADS  Google Scholar 

  16. McCaffrey, R. et al. Fault locking, block rotation and crustal deformation in the Pacific Northwest. Geophys. J. Int. 169, 1315–1340 (2007)

    Article  ADS  Google Scholar 

  17. Wang, K. et al. Crustal motion in the zone of the 1960 Chile earthquake: detangling earthquake-cycle deformation and forearc-sliver translation. Geochem. Geophys. Geosyst. 8, Q10010 (2007)

    ADS  Google Scholar 

  18. Khazaradze, G. et al. Prolonged post-seismic deformation of the 1960 great Chile earthquake and implications for mantle rheology. Geophys. Res. Lett. 29, 2050 (2002)

    Article  ADS  Google Scholar 

  19. Freymueller, J. T. et al. in Active Tectonics and Seismic Potential of Alaska (eds Freymueller, J. T., Haeussler, P. J., Wesson, R. L. & Ekstrom, G.) Geophys. Monogr. Ser. 179 1–42 (American Geophysical Union, 2008)

  20. Pollitz, F., Banerjee, P., Grijalva, K., Nagarajan, B. & Burgmann, R. Effect of 3-D viscoelastic structure on post-seismic relaxation from the 2004 M = 9.2 Sumatra earthquake. Geophys. J. Int. 173, 189–204 (2008)

    Article  ADS  Google Scholar 

  21. Shearer, P. & Bürgmann, R. Lessons learned from the 2004 Sumatra-Andaman megathrust rupture. Annu. Rev. Earth Planet. Sci. 38, 103–131 (2010)This review of the study of the 2004 Sumatra earthquake shows how geology, seismology, and space geodesy can be combined to investigate coseismic and postseismic deformation and tsunami processes.

    Article  ADS  CAS  Google Scholar 

  22. Grijalva, K. A., Bürgmann, R. & Banerjee, P. Using postseismic geodetic data to constrain the Sunda downdip transition zone. Eos (Fall Meet. Suppl. ) 90 (52), abstr. T13E–01. (2009)

  23. Weertman, J. & Weertman, J. R. High temperature creep of rock and mantle viscosity. Annu. Rev. Earth Planet. Sci. 3, 293–315 (1975)

    Article  ADS  Google Scholar 

  24. Peltier, W. R., Wu, P. & Yuen, D. A. in Anelasticity in the Earth (eds Stacey, F. D., Paterson, M. S. & Nicolas, A.) Geodynamics Ser. 4 59–77 (American Geophysical Union, 1981)

    Book  Google Scholar 

  25. Mitrovica, J. X. Haskell [1935] revisited. J. Geophys. Res. 101 (B1). 555–569 (1996)

    Article  ADS  Google Scholar 

  26. Hu, Y., Wang, K., He, J., Klotz, J. & Khazaradze, G. Three-dimensional viscoelastic finite element model for post-seismic deformation of the great 1960 Chile earthquake. J. Geophys. Res. 109, B12403 (2004)

    Article  ADS  Google Scholar 

  27. Moucha, R., Forte, A. M., Mitrovica, J. X. & Daradich, A. Lateral variations in mantle rheology: implications for convection related surface observables and inferred viscosity models. Geophys. J. Int. 169, 113–135 (2007)

    Article  ADS  Google Scholar 

  28. Hirth, G. & Kohlstedt, D. L. in Inside the Subduction Factory (ed. Eiler, J.) 83–105 (American Geophysical Union, 2003)

    Book  Google Scholar 

  29. Currie, C. A. & Hyndman, R. D. The thermal structure of subduction zone back arcs. J. Geophys. Res. 111, B08404 (2006)

    Article  ADS  Google Scholar 

  30. Billen, M. I. & Gurnis, M. A low viscosity wedge in subduction zones. Earth Planet. Sci. Lett. 193, 227–236 (2001)

    Article  ADS  CAS  Google Scholar 

  31. James, T. S., Clague, J. J., Wang, K. & Hutchinson, I. I. Postglacial rebound at the northern Cascadia subduction zone. Quat. Sci. Rev. 19, 1527–1541 (2000)

    Article  ADS  Google Scholar 

  32. Panet, I. et al. Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra–Andaman earthquake. Geochem. Geophys. Geosyst. 11, Q06008 (2010)

    Article  ADS  Google Scholar 

  33. Han, S.-C., Sauber, J., Luthcke, S. B., Ji, C. & Pollitz, F. F. Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data. J. Geophys. Res. 113, B11413 (2008)

    Article  ADS  Google Scholar 

  34. Freed, A. M., Hirth, G. & Behn, M. D. Using short-term postseismic displacements to infer the ambient deformation conditions for the upper mantle. J. Geophys. Res. 117, B01409 (2012)

    ADS  Google Scholar 

  35. Pollitz, F. F. Transient rheology of the uppermost mantle beneath the Mojave Desert, California. Earth Planet. Sci. Lett. 215, 89–104 (2003)

    Article  ADS  CAS  Google Scholar 

  36. Bachmann, R. et al. Exposed plate interface in the European Alps reveals fabric styles and gradients related to an ancient seismogenic coupling zone. J. Geophys. Res. 114, B05402 (2009)

    Article  ADS  Google Scholar 

  37. Wang, K. & Bilek, S. L. Do subducting seamounts generate or stop large earthquakes? Geology 39, 819–822 (2011)

    Article  ADS  Google Scholar 

  38. Scholl, D. W., Kirby, S. H. & von Huene, R. Exploring a link between great and giant megathrust earthquakes and relative thickness of sediment and eroded debris in the subduction channel to roughness of subducted relief. AGU Fall Meet. abstr. T14B–01. (2011)

  39. Scholz, C. H. Earthquakes and friction laws. Nature 391, 37–42 (1998)This paper reviews fundamentals of rate- and state-dependent friction and applications to earthquakes and aseismic fault slip.

    Article  ADS  CAS  Google Scholar 

  40. Perfettini, H., Avouac, J.-P. & Ruegg, J.-C. Geodetic displacements and aftershocks following the 2001 Mw = 8.4 Peru earthquake: implications for the mechanics of the earthquake cycle along subduction zones. J. Geophys. Res. 110, B09404 (2005)

    Article  ADS  Google Scholar 

  41. Wada, I. & Wang, K. Common depth of slab-mantle decoupling: reconciling diversity and uniformity of subduction zones. Geochem. Geophys. Geosyst. 10, Q10009 (2009)

    Article  ADS  Google Scholar 

  42. Hetland, E. A. & Simons, M. Post-seismic and interseismic fault creep. II: Transient creep and interseismic stress shadows on megathrusts. Geophys. J. Int. 181, 99–112 (2010)

    Article  ADS  Google Scholar 

  43. Savage, J. C. A dislocation model of strain accumulation and release at subduction zones. J. Geophys. Res. 88, 4984–4996 (1983)

    Article  ADS  Google Scholar 

  44. Pritchard, M. E. & Simons, M. An aseismic slip pulse in northern Chile and along-strike variations in seismogenic behaviour. J. Geophys. Res. 111, B08405 (2006)

    ADS  Google Scholar 

  45. Sawai, Y. et al. Transient uplift after a 17th-century earthquake along the Kuril subduction zone. Science 306, 1918–1920 (2004)

    Article  ADS  CAS  Google Scholar 

  46. Kogan, M. G. et al. The mechanism of postseismic deformation triggered by the 2006–2007 great Kuril earthquakes. Geophys. Res. Lett. 38, L06304 (2011)

    Article  ADS  Google Scholar 

  47. Simons, M. et al. The 2011 magnitude 9.0 Tohoku-oki earthquake: mosaicking the megathrust from seconds to centuries. Science 332, 1421–1425 (2011)

    Article  ADS  CAS  Google Scholar 

  48. Hu, Y. &. Wang, K. Spherical-Earth finite element model of short-term postseismic deformation following the 2004 Sumatra earthquake. J. Geophys. Res. (in the press)

  49. Hanks, T. C. & Kanamori, H. A moment magnitude scale. J. Geophys. Res. 84, 2348–2350 (1979)

    Article  ADS  Google Scholar 

  50. Segall, P. Earthquake and Volcano Deformation (Princeton University Press, 2010)

    Book  Google Scholar 

  51. Brooks, B. A. et al. Andean backarc deformation and the plate boundary earthquake cycle. AGU Fall Meet. abstr. S14A–08. (2011)

  52. Khazaradze, G. & Klotz, J. Short and long-term effects of GPS measured crustal deformation rates along the south central Andes. J. Geophys. Res. 108 (B6). 2289 (2003)

    Article  ADS  Google Scholar 

  53. Wallace, L. M. & Beavan, J. Diverse slow slip behavior at the Hikurangi ubduction margin, New Zealand. J. Geophys. Res. 115, B12402 (2010)

    Article  ADS  Google Scholar 

  54. Peng, Z. & Gomberg, J. An integrated perspective of the continuum between earthquakes and slow slip phenomena. Nature Geosci. 3, 599–607 (2010)

    Article  ADS  CAS  Google Scholar 

  55. Wang, K. Coupling of tectonic loading and earthquake fault slips at subduction zones. Pure Appl. Geophys. 145, 537–559 (1995)

    Article  ADS  Google Scholar 

  56. Chlieh, M. et al. Coseismic slip and afterslip of the great Mw 9.15 Sumatra-Andaman earthquake of 2004. Bull. Seismol. Soc. Am. 97 (1A). S152–S173 (2007)

    Article  Google Scholar 

  57. Bürgmann, R. & Dresen, G. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy and field observations. Annu. Rev. Earth Planet. Sci. 36, 531–567 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M. Kogan and M. Chlieh provided unpublished information on GPS station reversal after the 2006 Kuril and 2001 Peru earthquakes, respectively. This is Geological Survey of Canada contribution 20110422.

Author information

Authors and Affiliations

Authors

Contributions

K.W. designed the study and prepared the manuscript. Y.H. did the numerical modelling. J.H. wrote the modelling code and contributed to the modelling.

Corresponding author

Correspondence to Kelin Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, K., Hu, Y. & He, J. Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature 484, 327–332 (2012). https://doi.org/10.1038/nature11032

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11032

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing