Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago

Subjects

Abstract

The Earth has cooled over the past 4.5 billion years (Gyr) as a result of surface heat loss and declining radiogenic heat production. Igneous geochemistry has been used to understand how changing heat flux influenced Archaean geodynamics1,2, but records of systematic geochemical evolution are complicated by heterogeneity of the rock record and uncertainties regarding selection and preservation bias3,4,5. Here we apply statistical sampling techniques to a geochemical database of about 70,000 samples from the continental igneous rock record to produce a comprehensive record of secular geochemical evolution throughout Earth history. Consistent with secular mantle cooling, compatible and incompatible elements in basalts record gradually decreasing mantle melt fraction through time. Superimposed on this gradual evolution is a pervasive geochemical discontinuity occurring about 2.5 Gyr ago, involving substantial decreases in mantle melt fraction in basalts, and in indicators of deep crustal melting and fractionation, such as Na/K, Eu/Eu* (europium anomaly4) and La/Yb ratios in felsic rocks. Along with an increase in preserved crustal thickness across the Archaean/Proterozoic boundary6,7, these data are consistent with a model in which high-degree Archaean mantle melting produced a thick, mafic lower crust and consequent deep crustal delamination and melting—leading to abundant tonalite–trondhjemite–granodiorite magmatism and a thin preserved Archaean crust. The coincidence of the observed changes in geochemistry and crustal thickness with stepwise atmospheric oxidation8 at the end of the Archaean eon provides a significant temporal link between deep Earth geochemical processes and the rise of atmospheric oxygen on the Earth.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Secular compositional evolution of mafic lithologies.
Figure 2: Secular compositional evolution of felsic lithologies.
Figure 3: Relationship between lithospheric evolution and atmospheric oxidation.

References

  1. 1

    Herzberg, C. et al. Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochem. Geophys. Geosys. 8, 2006GC001390 (2007)

    Article  Google Scholar 

  2. 2

    Hawkesworth, C. J. & Kemp, A. I. S. Evolution of the continental crust. Nature 443, 811–817 (2006)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Condie, K. C. & O'Neill, C. The Archaean-Proterozoic boundary: 500 my of tectonic transition in Earth history. Am. J. Sci. 310, 775–790 (2010)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Moyen, J.-F. The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos 123, 21–36 (2011)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Artemieva, I. M. Global 1 × 1 thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416, 245–277 (2006)

    ADS  Article  Google Scholar 

  6. 6

    Durrheim, R. J. & Mooney, W. D. Archaean and Proterozoic crustal evolution: evidence from crustal seismology. Geology 19, 606–609 (1991)

    ADS  Article  Google Scholar 

  7. 7

    Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Gando, A. et al. Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nature Geosci. 4, 647–651 (2011)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Condie, K. C. & Pease, V. (eds) When Did Plate Tectonics Begin on Planet Earth? (GSA, 2008)

    Google Scholar 

  10. 10

    de Wit, M. J. On Archaean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precambr. Res. 91, 181–226 (1998)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Condie, K. C. Did the character of subduction change at the end of the Archaean? Constraints from convergent-margin granitoids. Geology 36, 611–614 (2008)

    CAS  ADS  MathSciNet  Article  Google Scholar 

  12. 12

    Li, Z.-X. A. & Lee, C.-T. A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004)

    CAS  ADS  Article  Google Scholar 

  13. 13

    EarthChem. <http://www.earthchem.org/> (accessed 14 February 2011)

  14. 14

    Bassin, C., Laske, G. & Masters, G. The current limits of resolution for surface wave tomography in North America. Eos 81, F897 (2000)

    Google Scholar 

  15. 15

    Ghiorso, M. S. & Sack, R. O. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197–212 (1995)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Asimow, P. D. & Ghiorso, M. S. Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am. Mineral. 83, 1127–1132 (1998)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998)

    CAS  ADS  Article  Google Scholar 

  18. 18

    Hirschmann, M. M., Ghiorso, M. S., Wasylenki, L. E., Asimow, P. D. & Stolper, E. M. Calculation of peridotite partial melting from thermodynamic models of minerals and melts. I. Review of methods and comparison with experiments. J. Petrol. 39, 1091–1115 (1998)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Drummond, M. S. & Defant, M. J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons. J. Geophys. Res. 95, 21,503–21,521 (1990)

    ADS  Article  Google Scholar 

  20. 20

    Moyen, J.-F. & Stevens, G. in Archaean Geodynamics and Environment (eds Benn, K., Mareschal, J.-C. & Condie, K. C. ) 147–175 (AGU Monograph, 2006)

    Google Scholar 

  21. 21

    Petford, N. & Atherton, M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J. Petrol. 37, 1491–1521 (1996)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Müntener, O., Kelemen, P. B. & Grove, T. L. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib. Mineral. Petrol. 141, 643–658 (2001)

    ADS  Article  Google Scholar 

  23. 23

    Kay, R. W. & Mahlburg Kay, S. Delamination and delamination magmatism. Tectonophysics 219, 177–189 (1993)

    ADS  Article  Google Scholar 

  24. 24

    Bédard, J. H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim. Cosmochim. Acta 70, 1188–1214 (2006)

    ADS  Article  Google Scholar 

  25. 25

    Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth's earliest sulfur cycle. Science 289, 756–758 (2000)

    CAS  ADS  Article  Google Scholar 

  26. 26

    Fischer, W. W. & Knoll, A. H. An iron shuttle for deepwater silica in Late Archaean and early Paleoproterozoic iron formation. Geol. Soc. Am. Bull. 121, 222–235 (2009)

    Google Scholar 

  27. 27

    Rasmussen, B. & Buick, R. Redox state of the Archaean atmosphere: evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27, 115–118 (1999)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007)

    CAS  ADS  Article  Google Scholar 

  29. 29

    Kasting, J., Eggler, D. & Raeburn, S. Mantle redox evolution and the oxidation state of the Archaean atmosphere. J. Geol. 101, 245–257 (1993)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Lee, C.-T. A. et al. The redox state of arc mantle using Zn/Fe systematics. Nature 468, 681–685 (2010)

    CAS  ADS  Article  Google Scholar 

  31. 31

    Canil, D. et al. Ferric iron in peridotites and mantle oxidation states. Earth Planet. Sci. Lett. 123, 205–220 (1994)

    CAS  ADS  Article  Google Scholar 

  32. 32

    van Aken, P. V. & Liebscher, B. Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L 23 electron energy-loss near-edge spectra. Phys. Chem. Miner. 29, 188–200 (2002)

    CAS  ADS  Article  Google Scholar 

  33. 33

    Rye, R. & Holland, H. D. Paleosols and the evolution of atmospheric oxygen: a critical review. Am. J. Sci. 298, 621–672 (1998)

    CAS  ADS  Article  Google Scholar 

  34. 34

    Matsumoto, M. & Nishimura, T. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8, 3–30 (1998)

    Article  Google Scholar 

  35. 35

    Condie, K. C., Bickford, M. E., Aster, R. C., Belousova, E. & Scholl, D. W. Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust. Geol. Soc. Am. Bull. 123, 951–957 (2011)

    CAS  ADS  Article  Google Scholar 

  36. 36

    Condie, K. C. & Aster, R. C. Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambr. Res. 180, 227–236 (2010)

    CAS  ADS  Article  Google Scholar 

  37. 37

    White, W. M. & Hofmann, A. W., Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296, 821–825 (1982)

    CAS  ADS  Article  Google Scholar 

  38. 38

    Vervoort, J. D. & Blichert-Toft, J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta 63, 533–556 (1999)

    CAS  ADS  Article  Google Scholar 

  39. 39

    Hofmann, A. W., Jochum, K. P., Seufert, M. & White, W. M. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet. Sci. Lett. 79, 33–45 (1986)

    CAS  ADS  Article  Google Scholar 

  40. 40

    Klein, E. & Langmuir, C. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 92, 8089–8115 (1987)

    CAS  ADS  Article  Google Scholar 

  41. 41

    Berry, A. J., Danyushevsky, L. V., O'Neill, H. S. C., Newville, M. & Sutton, S. R. Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature 455, 960–963 (2008)

    CAS  ADS  Article  Google Scholar 

  42. 42

    Peacock, S. M. Fluid processes in subduction zones. Science 248, 329–337 (1990)

    CAS  ADS  Article  Google Scholar 

  43. 43

    Maruyama, S. & Okamoto, K. Water transportation from the subducting slab into the mantle transition zone. Gondwana Res. 11, 148–165 (2007)

    CAS  ADS  Article  Google Scholar 

  44. 44

    Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010)

    CAS  ADS  Article  Google Scholar 

  45. 45

    Walter, M. J. Melt extraction and compositional variability in mantle lithosphere. in Treatise on Geochemistry. Vol. 1 (eds Holland, H. D. & Turekian, K. K. ) 363–394 (Pergamon, 2003)

    Google Scholar 

  46. 46

    Kump, L., Kasting, J. & Barley, M. Rise of atmospheric oxygen and the “upside-down” Archaean mantle. Geochem. Geophys. Geosys. 2, 2000GC000114 (2001)

    Article  Google Scholar 

  47. 47

    Nikolaev, G. S., Borisov, A. A. & Ariskin, A. A. Calculation of the ferric-ferrous ratio in magmatic melts: testing and additional calibration of empirical equations for various magmatic series. Geochem. Int. 34, 641–649 (1996)

    Google Scholar 

  48. 48

    Crisp, J. A. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20, 177–211 (1984)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank K. Condie and J.-F. Moyen for providing their data sets of granitoid rocks through time; F. Simons for assistance with statistical methods; C.-T. Lee, W. Fischer, A. Maloof, C. Langmuir, O. Müntener, J. Higgins, A. Rubin, T. Duffy, K. Samperton, and B. Dyer for discussions; and W. White for comments. C.B.K. was supported by a Princeton University Centennial Fellowship

Author information

Affiliations

Authors

Contributions

Both authors interpreted the results and prepared the manuscript. C.B.K. compiled the data set and performed the calculations.

Corresponding author

Correspondence to C. Brenhin Keller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-11. (PDF 1228 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Keller, C., Schoene, B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485, 490–493 (2012). https://doi.org/10.1038/nature11024

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing